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2 ORGANIZATION OF THE MANUAL

1 Philosophy and Motivation

With the decision at the STAR collaboration meeting in January 1998 at LBNL that a migration to the C++
programming language and Object-Oriented (OO) coding practices will be made, it was suggested that the
TPC slow simulator be the first package to be re-engineered using these techniques and principles. This
project was to be a prototype for such future developments within the collaboration, both in its design and
structure. A requirements documents was quickly prepared after the meeting and work began on simple
design, prototyping, and evaluation of various commercial and public domain class libraries.

The result of these initial studies was the development of the StarClassLibrary1 which drew on the devel-
opments of CLHEP but relied heavily on the ANSI standard2 C++ Standard Library and specifically the
Standard Template Library or STL. This library provides several physics containers (three- and four- vec-
tors) as well as matrices random number generators, a system of units, etc.). It was upon this development
that the TPC Response Simulator (TRS) was built.

The goal of re-engineering TRS was two-fold:

� generate an object-oriented package using C++ in the STAR computing environment.

� add detail and develop the simulation tools parallel to the commissioning schedule of the STAR TPC.

In order to add flexibility to the package it was designed to support two types of simulation from a single
interface; that is, a very detailed microscopic simulation of the processes occurring in the STAR-TPC and
a faster parameterized version which could be used for large scale processing. In order to do this the design
concentrated on isolating the physics processes of interest and how the data could be stored in generic data
containers. These ideas, as well as a preliminary class design were drawn up in a design document3 which
was discussed at the STAR collaboration meeting in August 1998 at BNL. This document was the basis for
the design and developments for the first version of TRS. This document is a report of these developments
as well as a guide for its use in its current form.

2 Organization of the Manual

This manual is a description of the TPC Response Simulator (TRS) package. The first part of the manual
is a User Guide which describes the platform dependencies, package organization and general description
of the design and basic implementation of the components within the package. The subsequent parts make
up the Reference Manual which is a detailed description of the component classes of TRS. This is broken
into four different sections, the first two of which describe the generic data base and coordinate classes used
in the package, which are not necessarily specific to TRS, but which are of interest to the general STAR
software environment and could be used in any software package. If these gain acceptance within the
collaboration, they can be moved to a more accessible location such as the StarClassLibrary The last two
parts deal with the TRS specific classes which are broken into two separate components—the containers
and processes.

1http://star.physics.yale.edu/SCL
2http://www.cyngus.com/misc/wp/nov97/
3see http://www.rhic.bnl.gov/STAR/html/comp l/simu/TpcRespSim/src/ps/TrsDesign.ps
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4 ORGANIZATION OF THE TRS PACKAGE

3 Platforms and Compilers

The TPC Response Simulator (TRS) was developed on an HP workstation since HP currently provides
the closest ANSI compliant compiler and standard libraries. However the target platforms on which the
code will ultimately run are LINUX and SUN . Red Hat LINUX 5.0 and higher versions provide very
close to fully ANSI compliant compilers with only exceptions4 being not fully supported. The current
SUN compiler (CC v4.2) however, is far from compliant and the large scale use of macros populate the
code to allow for operation in a SOLARIS environment. A modified standard C++ library from Object
Space (v2.0.2) was created in order to make up for the vendor short-comings. This library is currently
available for distribution from the STAR CVS repository. It is foreseen that the new SUN compiler (CC
v5.0) which is scheduled for release in March of 1999 should large solve many of the current problems and
inconveniences of the SUN compiler.

TRS has been tested and the example programs that utilize the TRS classes currently compile on the
following platforms:

1. HP-UX 10.20:

� aCC A.01.06 or higher versions. The standard library supplied from the vendor is the basis of
most other libraries in the industry.

2. Red Hat Linux 5.0 or higher versions:

� egcs 1.0.2 (g++).

3. Solaris 2.4–2.6:

� CC 4.2 and Object Space 2.0.2 modified.

Tests with Visual C++ 5.0 have not been attempted since the StarClassLibrary (SCL) does not currently
build due to the lack of support of templated member functions and a broken overloading mechanism. It
is hoped that this will be addressed with v6.0 which has been released (but not tested). In the interim,
non-templated container classes have been written and incorporated into theSCL, so that this should now
be possible. No efforts have been spent to write, port, or adapt the code to SGI-IRIX nor IBM-AIX and
such developments are not foreseen unless there is significant user demand.

4 Organization of the TRS Package

All documentation, code, and header files of TRS are contained in the CVS repository at BNL in the
$STAR/StRoot section in a directory named ./St trs Maker.5. There are several subdirectories in which
the code is then distributed. The header files as well as the source code in contained in the ./include and
./src directories respectively. The ./local directory contains the necessary GNUMakefiles in order to com-
pile stand-alone shared libraries such that code can be run outside the ROOT/STAR framework. This was

4and some member functions of minimal importance in the STL.
5To be changed to: StTrsMaker/
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5 REQUIREMENTS AND INSTALLATION OF TRS

initially done to avoid the complications of the constantly evolving STAR infrastructure, (i.e. STAF/ROOT)
however it has been retained in order to aid in parallel development projects which require the use of some
classes within TRS, but do not necessarily require or warrant the use of the complete STAR infrastructure.

Example programs as well as those to monitor and control the developments within the TRS classes are
contained in the directory ./examples. This directory also contains the necessary GNUMakefiles for com-
pilation. To avoid confusion, both the TRS shared libraries and the executables from the shared libraries
are kept in a directory denoted by the system architecture derived from the STAR environment variable
$STAR SYS. Finally the documentation is stored in the ./doc directory. This currently consists of this
manual which is written in LATEX. A class browser which illustrates the function prototypes, also used with
the SCL is also a possibility in the future. The developments that occur in TRS are kept on the STAR
WWW page (see: http://www.rhic.bnl.gov/STAR/html/comp l/simu/TpcRespSim/src/Welcome.html).

All makefiles are especially written for the GNU make utility (gmake) and rely on certain features only
available therein. This is also the reason why we do not follow the standard naming scheme but named them
GNUmakefile. Note that these Makefiles do not contain any hard-wired file names; the dependencies are
rather created on-the-fly at compile time. The libraries should also be generated from within the ”official”
STAR Makefiles.

5 Requirements and Installation of TRS

The TPC Response Simulator (TRS) requires the Standard C++ Library, including the STL as well as the
STAR Class Library (SCL). TRS was structured such that if the SCL will compile and run on a system, so
too will TRS.

TRS is part of the official STAR software distribution and is therefore present in the actual STAR software
releases. If you want to install TRS locally on your machine you should continue to read the following
three sections which explains how to obtain, compile and install the code.

5.1 The source code

The TPC Response Simulator is under CVS control at BNL. It can be accessed via afs:

1. Obtain an afs token: klog -cell rhic.

2. Make sure $CVSROOT is set properly. It should be if the STAR setup scripts were run at login time:
(i.e. CVSROOT = /afs/rhic/star/packages/repository)

3. Check-out package into your current working directory:
cvs checkout StRoot/StTrsMaker

4



5 REQUIREMENTS AND INSTALLATION OF TRS 5.2 Compilation

5.2 Compilation

In order to create the library and (optionally) the referring examples you must first have the STAR Class
Library (SCL) installed and compiled. For instructions see the SCL manual6 . After the SCL is installed
and compiled, the directory with the header files and shared libraries must be set in the TRS GNUMake-
file.architecture. If the installation is away from BNL, a local (or through afs) copy of the SCL can be
used. In order to use this, a flag (AT BNL) can also be set in the GNUMakefile.architecture, otherwise,
the BNL installation of the SCL is assumed to be used.

Please note, however, that TRS is not yet supported on all STAR platforms. See section 3 for the current
platforms that have been tested. To compile:

� set the correct system flag:
In csh, tcsh:
setenv STAR SYS system-flag.
In sh, ksh, bash, zsh:
export STAR SYS=system-flag.
where system-compiler can be one of:

– i386 linux2

– i386 redhat50

– i386 redhat51

– i386 redhat52

– hp ux102

– sun4x 54

– sun4x 55

– sun4x 56

� cd StRoot/StTrsMaker/local

� gmake
compiles the code into a shared (or archived) library.

This creates a shared (or archived library) against which the test programs (or your own) can link against.
A library is located under a directory with the same name as the STAR SYS environment variable. This
setup is best suited for developers working with, and on, TRS.

Hint: In case your platform is not supported and you encounter problems with your native C++ com-
piler you can always use the GNU compiler (egcs or gcc depending on your installation) by defining
STAR SYS=i386 linux2. Note also that “unsupported platform” does not necessarily mean that the
SCL/TRS will not compile, but rather that it was never tested and that the makefiles contain no parame-
ters specific for this environment. In general it should be sufficient to adjust the settings in GNUmake-
file.architecture (see also section 6).

6Post-script version available at http://star.physics.yale.edu/SCL
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6 MACROS

6 Macros

The TPC Response Simulator (TRS) is coded under the assumption that all ANSI features, and a stan-
dard Library, including the STL, are available, and that there is access to the Star Class Library . If the
compiler used is fully ANSI compliant TRS will compile without any modifications, as will the STAR
Class Library (see the SCL manual for specific details).
Because the new C++ ANSI standard pushes the limits of current compiler technology, a number of com-
piler and Standard C++ Library features are often missing or implemented in a way that differs from the
ANSI standard.
In order to use TRS on those systems various macros were defined which either disable certain features,
e.g. exception handling, or use slightly modified (and less elegant) code. The following macros are used
throughout the SCL and TRS. If the SCL and TRS is installed properly they should be defined according
to your platform/compiler. Please note that the same flags should be used for the compilation of both the
SCL and TRS!

6.1 Generic Macros

The following macros are also used in the Star Class Library .

ST NO MEMBER TEMPLATES: defined if the compiler does not support template member functions.

ST NO EXCEPTIONS: defined if the compiler does not support exception handling. NOTE: This flag is
recommended to be defined at all times in order to avoid inefficiencies due to the extended memory
required for exception handling.

ST NO NUMERIC LIMITS: defined if the STL class numeric limits is not available (it is usually located
in the �

limits � header file).

ST NO TEMPLATE DEF ARGS: defined if the compiler does not support template default arguments

ST NO NAMESPACES: definded if the compiler does not support multiple namespaces.

ST OLD CLHEP SYSTEM OF UNITS: user defined if one must use units as defined in CLHEP v1.2 (use
of this macro is strongly discouraged).

NO HBOOK INIT: restricts the automatic initialization of HBOOK memory (SCL specific).

RWSTD BOUNDS CHECKING: used to check that the bounds of STL containers7 are not exceeded.

Furthermore several platform idiosynchrocies and shortcomings must be dealt with in a very direct manner.
As such, macros are utilized which are defined by the compilers. For:

� SUN � sun

� HP � hp

� Linux � GNC GCC
7Only for Rogue-Wave implementations of the STL
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8 OVERVIEW AND DESIGN 6.2 TRS Specific Macros

6.2 TRS Specific Macros

The following macros are only used in TRS specific classes.

ST CHECK SECTOR BOUNDS: defined if it is desired to check that the indices do not over step the bound-
aries for pad rows, pad numbers, or time bins.

7 Documentation

The documentation of TRS consists of the User Guide and Reference Manual (i.e. this document) is lo-
cated in ./StRoot/StTrsMaker/doc/tex, and (shortly) a HTML class browser in StRoot/StTrsMaker/doc/html.
These are not automatically made during the installation but must be created separately as follows:

� cd StRoot/StTrsMaker/local

� gmake doc

The class index and all other HTML pages referenced therein will be generated automatically from the
current code.

8 Overview and Design

The TRS design document8 sets out the design, requirements and philosophy of TRS, as well as the first
simple description of the algorithms proposed for use in the various processes that are modeled.

The initial prototyping phase led to the development of two types of classes that make up the core of the
physics and simulation components of TRS:

� Processes – physical processes that model an aspect of the physics occuring in the chamber such
as charge transport, wire chamber operation and signal generation. These are defined in detail in
section 8.1.

� Containers – structures which contain the various types and forms of data required in the time
evolution of the simulation. These are defined in section 16.

In the class design of the package, each physical process, as described above, was mapped to a single
class, as were the containers. This provides a simple factorization between processes which allows them
to function independently of one another. It also allows the isolation of single processes for detailed study
independent of the effect of other processes. As an example, previous attempts to simulate the behavior of
a wire chamber use a parameterization (f) of a pad response function from empirical relations such as:

���������
	��������������������������
(1)

8http://www.rhic.bnl.gov/STAR/html/comp l/simu/TpcRespSim/src/ps/TrsDesign.ps

7



8.1 Physical Processes 8 OVERVIEW AND DESIGN

where � incorporates terms which depend on the orientation of the trajectory of a particle, the transport
properties of ionization through a gaseous medium, pad plane geometry, electronics properties, etc. As
such it is very difficult to isolate the effects of a specific process, and parameters which affected by many
different processes result. This reduces the physical significance of tunable parameters and while this may
be fine for large scale production of data, for understanding of the effects of physical processes, it is not very
useful. This does not need to be the case since the physics processes important in the operation of a TPC
are independent of not only the granularity of the simulation but also the level of detail of the simulation.
As an example, one needs to transport the ionization to the read-out plane independent of whether it is
a single electron or segment of charge, however the detail of whether one calculates the drift velocity at
every point on a fine mesh grid and propagate the charge across the grid, or do a simple projection of the
charge onto the pad plane. As such, the above processes can define an interface from which the FAST
parameterizations and the SLOW microscopic simulation can utilize. This allows the use of the same code
and interface with only a switch (or flag) which can be used to set the detail of the simulation. This allows
the same infrastructure to handle various levels of detail without resorting to separate packages for each.
Rather the same interface will mean the same function names will be called, with only the implementations
which vary.

As such, the processes are the actual physical events that occur inside the chamber and operate on data
which are stored in containers. Thus a general practice was followed that input data would be passed
to a process class via a container and the processor would either mutate the data within the containers
or produce data that would be stored more naturally in a new or separate container for the next physics
process. As such, although the functions of these two types of classes fulfill two different needs within the
package, the relation between them is very close. These relations are explained in terms of very physical
means in the following two sections (sections 8.1 and 8.2),

8.1 Physical Processes

There are four main types of processes that were identified as being necessary to model in order to re-
produce the operation of a TPC in TRS. When discussing the mode of operation of a TPC they become
evident:

� Ionization Transport – charge transport of the ionization. deposited in the active region to the readout
chambers.

� Charge Collection – electron/ionization collection on the sense wires of the multi-wire proportional
chamber (MWPC).

� Analog Signal Generation – charge induction on the pad plane and the generation of the time evolu-
tion of the analog signals on the pads.

� Digital Signal Generation – Digital conversion of analog signals.

A brief overview of the processes are given below, and more detailed remarks are given in section 9.

8



8 OVERVIEW AND DESIGN 8.1 Physical Processes

8.1.1 Ionization Decomposition and Transport

The ionization transport takes the charge deposited in an active volume within a TPC detector and transports
it through the field cage structure of the TPC to the read-out plane. The charge which is deposited can either
be generated externally, by GEANT or internally given knowledge about parameters of the the fill gas in
the chamber such as the mean free path and ionization potential.

In the most common mode of operation, the ionization of the particle tracks will be described by GEANT,
which will provide the amount of energy deposited (dE) over a given path-length (ds), by a particle with
a momentum

�� . Given the average ionization potential of the gas, the total number of electrons can be
calculated such that the transport can be done at the segment level (dE) or the single electron level. This
provides a mechanism which allows the possibility to distinguish between a detailed microscopic simula-
tion and a macroscopic parameterization; that is, the granularity of the simulation can take on a range from
the single electron level to a charge segment containing many 10s of electrons. By varying the length of the
segment that is transported (and subsequently processed), the granularity of the simulation can be varied.
The ionization can then be distributed on the pad-plane according to the distributions which characterize
the effects of diffusion. The role of the charge transporter is to alter the x and y positions according to the
transverse diffusions, the z position to reflect the drift time, with the effects of longitudinal diffusion folded
in) and the amount of charge that actually reached the read-out plane.

8.1.2 Charge Collection and Amplification

Once the electrons arrive at the read-out plane, they must be collected by the individual anode/sense wires
of the multi-wire proportional chamber (MWPC). This is where the avalanche process multiplies the signal
of several 10s of electrons to several 10

�

-10
�

, depending on the potential on the wires. This operation
is somewhat of a hybrid as it is really occurring within a container, however the processes occur in the
amplification stage require the knowledge of the wire grid structure, and so the processes are incorporated
here for an efficient implementation.

8.1.3 Analog Signal Generation

Once the charge is multiplied at the field wires of the MWPC, the amount of charge induced on the pads
produces an analog signal which varies as a function of time. These events can be modeled via two pro-
cesses:

� charge induction on the pads.

� charge sampling by the electronics.

Given the amount of charge on the wires and the geometry of the pad plane, the induced charge on any arbi-
trary pad can be calculated. From this quantity of charge, the signal at the output of the pre-amplifier/shaper
can be determined given the response (i.e. transfer function) of the analog electronics. Although the time
evolution of the signal that is developed on the wires is nearly entirely due to the motion of the positive
ions away from the wire, the number of electrons produced provides a measure of the total amount of
charge that is available to be induced on the pad plane. The shaping width of the electronics provide an

9
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estimate of the fraction of charge that is really observed. In reality only a fraction of the total charge is seen
because of the small mobility of the positive charged ions and it takes a long time for the signal to finally
decay (the famous 1/T tail). As such the shaping properties of the analog electronics (i.e. pre-amplifier and
pulse shaping) plays an important role in the amount of charge actually measured. As such, given the total
amount of charge induced on the pads, the electronics will differentiate the signal, and be sensitive to a
certain fraction of the total charge. In the case of STAR, it is of the order of 45% of the charge. This analog
charge can then be distributed into time bins modeling the behavior of the switch capacitor array (SCA)

8.1.4 Digital Signal Generation

After the analog charge has been distributed into the time bins on each pad, it can be digitized. This is
an important property which is to be modeled because STAR uses a non-linear 8-bit ADC which contains
the information of a 10-bit linear scale. Both the analog and digital signal generation components operate
on the signals which are distributed in time bins, however there functions and operations as well as the
information contained differ enough to justify breaking the processes into two distinct types of processes.
The digital information can be compressed much more and require a format that is accessible via the Data
Decoder.9

8.2 Data Containers

The containers required for TRS are essentially defined by the physics processes as described in section 8.1.
Container classes are used rather than simple data structures because it is more simple to incorporate book-
keeping and simple functions which are closely matched to the structure of the container into a class. In
essence the containers establish a kind of I/O interface between the separate processes and allow the same
”physics framework” to exist, independent of the granularity or detail of the simulation. As a concrete ex-
ample the physics of the ionization transport of a charge segment through the TPC field cage is independent
of whether the segment in question is a single electron or macroscopic charge cloud. As such the contain-
ers are designed in a very generic manner that would facilitate implementation of the physics processes at
various levels of detail and granularity. The containers required for TRS are:

� Charge Segment – the input to the program is an amount of energy (dE) deposited in a TPC volume
with length (ds), by a particle of momentum

�� . In essence it is a object definition of a g2t tpc hit-like
structure.

� Charge Mini Segment – a fraction of a Charge Segment (above) which can be, in the limit, the
position of a single electron. This is transported to the read-out plane.

� Wire Bin Entry – Position and charge of an ionization segment (Charge Mini Segment) at the wire
plane after the ionization transport.

� Wire Histogram – all anode/sense wires which make up the MWPC which facilitates the charge
collection.

9see DAQ interface to Offline, M. Shultz et al.
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� Analog Signal – structure containing the time (centroid) and amplitude of a signal on a pad. This can
function as storage for both analog and digital signals

� Analog Sector – contains analog signals on pads and is the main working structure for calculations
involving the charge induced on the pads.

� Digital Sector – contains digital signals on pads and contains the output data of the simulation.

The containers and the processes are meant to be as independent as possible and only overlap when con-
cerns of efficiency over ride the design guidelines. The functions of the containers are described in more
detail below:

8.2.1 Charge Segment

The purpose of the slow simulator is to transform ionization segments (usually produced by GEANT, or
some type of external program) to pixel, or Raw TPC Data. As such the input will nominally be a quantity
of energy (dE) deposited by a track over a finite path length (ds) at a coordinate (

��
). This information was

previously wrapped in two C/Fortran structures called g2t tpc hit and g2t tpc track. In the context of TRS
it is necessary, and more convenient, to have this data wrapped in a class structure. This allows the same
possibilities of data access as simple structures, however the functionality goes beyond data encapsulation.
It also allows the use of more flexible utilities such as the StThreeVector to keep track of the position
and momentum of track segment, as well as the utilities these classes provide. Furthermore operations
that are intrinsic to the segment itself such as rotation, fragmenting (segment splitting) (Note: splitting
requires knowledge of the gas parameters as well), etc. can also be associated with the object making
it more ”complete”. These operations are necessary for rotating the charge segment into the sector 12
reference frame of the TPC and splitting the ionization into smaller segments to increase the granularity of
the simulation.

8.2.2 Charge Mini Segment

The charge mini segment is a fragment of a charge segment (above) after it has been split. It can contain
the complete charge segment or a fraction of it. Each mini segment is distributed within the path length
of the charge segment (ds) onto a helical trajectory according to the mean free path of the particle within
the gas (medium). It is this mini segment on which the charge transporter process will operate. As such
the relevant data members are the position of the segment and the number of electrons. Access and set
functions are provided so that the transporter has read and write access to these quantities.

8.2.3 Wire Bin Entry

Once the charge reaches the anode wire grid it must be collected on the sense/anode wires. In order to
distribute the ionization onto the wires after diffusion effects are introduced (in the charge transporter), the
ionization must be repackaged such that a specific quantity of ionization can be assigned to a position on
the anode wires. Thus the wire bin entry is made to collect an amount of charge, � in the vicinity of an
anode wire at a position

��
, which can be assigned to a wire.

11
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8.2.4 Wire Histogram

The wire histogram is a class which models the charge collection on single wires in a controlled manner;
that is, charge is assigned through the wire bin entry class. The functionality of this class goes beyond
simply keeping track of the amount of ionization collected on a single wire, but also possesses functions
necessary to calculate gas gain amplification of each cluster. The reason this “process” is associated with
a container is that the structure and layout of the wire grid, which is necessary in the wire histogram is also
necessary to be able to do gas gain. Thus instead of imposing overhead of redundant class construction,
it was incorporated here. This is one of the advantages of Object-Oriented design. Each charge cloud can
now be used to induce a signal on the pad plane.

8.2.5 Analog Signal

An electronic signal, regardless of it being analog or digital, can be characterized by a pair of numbers
which represents the time (centroid) and total charge. This class provides both access and set functions to
the data. The storage of an arbitrary signal is the purpose of this class. In order for full reconstruction of
an analog form however, a functional form must also be specified. No matter, the final output of the TRS
package is pixel data; that is a given amplitude at a given time which is indexed by a pad-row and pad
number. Keeping the time allows the flexibility of zero-suppressing any data with a negligible amplitude.
This structure is used to keep all the signals that are generated on the pad plane, both analog and digital.
In this sense the term analog is probably a misnomer, but it is foreseen in the future to introduce another
digital signal which does not require float precision of the stored values. This should improve the storage
requirements for a single event.

8.2.6 Analog Sector

The final output of the simulator is pixel data which is indexed by pad-row, pad number, and perhaps time-
bin. The sector is a container which can store an indeterminate number analog signals indexed by these
quantities. As such after a specific charge is induced onto the cathode pads, the analog sector keeps track
of all intermediate stages of calculation before digitization occurs. Please note that although both analog or
digital signals can be stored, only analog information is stored within this structure. The data is accessible
either by pad-row, or single pad indices. Iterators are also provided within the class to facilitate traversal of
the structure.

8.2.7 Digital Sector

The final output of the simulator is pixel data which is indexed by pad-row, pad number. The digital sector
is a container which can store an indeterminate number of digital (8-bit) signals indexed by these quantities.
The complete simulation of a complete detector is 24 separate digital sectors.

12
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8.3 Auxiliary Components

By itself the containers and processes must be supplemented by various administrative and book-keeping
type classes. Classes are required in order to keep track of the containers as well as which type of simulation
(i.e. fast or slow) is being used. This is the job of a program manager which takes the form the the
StTrsMaker.cxx in the STAR environment, however, no STAR/ROOT specific functions that are used that
require it to be run in this framework. The ”Maker” also functions as an event reader which provides the
I/O interface between the raw input (GEANT) data and the output pixel data. As such, it is used as a
”writer” which can direct the produced data into the appropriate place. As with the manager, these classes
can be provided externally. In addition to these types of classes, there is also a need for simple library
functions which give access to experimental constants from data bases and a means to transform between
the basic coordinate types. It was decided that such classes should also be developed in the context of TRS
for STAR.

A prominent design goal of the TRS package was to have no hard coded numerical constants within the
code. Rather they would be accessed from a data base, which was an undefined quantity at the beginning of
the development period of TRS. Specifically it was not known whether access to the data would be through
GEANT, ROOT, or a BABAR like conditional data base derived from Objectivity. In order to be flexible to
simultaneous developments from the Grand Challenge developments which was charged with large scale
data base access for the RHIC experiments, several data base interfaces classes were defined. These took
the form as purely virtual abstract classes which defined the type and names of parameters to which TRS
required access. An abstract class was used to ensure that independent of the implementation, that is
whether an Objectivity, ROOT, GEANT, etc. was used, the same parameters and names would exist and
this would make the code stable against evolving developments and implementations. The requirements
for data bases can be split into four or five different types. These are:

� Geometry – geometrical parameters and dimensions of the detector, pad-plane, field cage, etc.

� Slow Control – parameters which must be monitored or controlled such as drift velocity, voltages,
and environmental conditions.

� Electronics – all electronics parameters such as gains, sampling times, frequencies, gains, etc.

� Magnetic Field.

� Gas/Ionization requires knowledge of the parameters of the gas.

Along with these data base interfaces, various transformation routines between different coordinate systems
were required. Currently three types of coordinates are implemented and used:

� TPC Raw Pad Coordinate – defined by a sector, pad row, pad, and time bucket.

� TPC Local Coordinate – defined by a three-vector with respect to an origin at the center of the TPC.

� STAR Global Coordinate – defined by a three-vector which is the global coordinate system, fixed by
a survey of the detector with respect to the magnet iron.

13
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Although the simulation is done within the TPC local coordinate system, there is a need to also define a
global coordinate system as the magnetic field (as well as any other detector) will be linked through this
coordinate system. It should be noted that the geometry for this transformation has not been implemented
into TRS yet.

The coordinates and transformations between each system requires the knowledge of the geometry of the
chamber in general. As such the coordinate transformations were designed so that any reference to these
parameters would be through an interface which could access any Grand Challenge infrastructure defined
for STAR in the future.

Although the coordinate transformations and data base interfaces are not specific to the TRS package,
they were required before a real implementation could be developed. As such the implementation of these
classes was done in a TPC specific manner, however the design incorporated ideas such that the framework
could be easily extended to other detector sub-systems. It is foreseen that in the near future these classes
(or subsequent versions) will be incorporated into the SCL with access to the official STAR data base
infrastructure, rather than the simple TRS framework. Below the data base interfaces and the coordinate
transformations are described in more detail.

8.3.1 Data Base Interfaces

The same common design for all data base interfaces was implemented. A purely abstract base class, from
which any concrete class must inherit from, defined the necessary functionality of these access classes.
This provides a constant user interface, independent of the evolution of the developments in data base
implementation. This was seen as a necessity to keep TRS stable against this evolution. Each concrete
class is implemented as a singleton class10 for several reasons. First, in the initial implementation, these
classes are initialized each time an instance is created and this can be very time consuming if all values
must be assigned to data members within the class. Also because the many classes which model the physics
require access to the data bases, it is necessary to ensure that several different data base implementations
are NOT used simultaneously. A singleton class ensures the same functions are used homogeneously in
the code. Thus for reasons of efficiency, and robustness it was decided to use this design pattern. It should
be mentioned that this mechanism can be extended to allow for multiple versions of geometry which will
be important once real survey data must be reconciled with experimental data.

In the current implementation of the simple data bases, the classes are a collection of inline access functions,
along with some simple diagnostic features that allows the user to print out the values associated with all
member functions. It should also be noted that to ensure consistency in the units, the SystemOfUnits
class from the SCL are used through out.

Geometry– Contains the geometrical parameters which define the dimensions and construction of the
detector. For the TPC, these parameters describe the field cage, pad plane, and wire chamber dimensions.

Slow Control– Contains all parameters which are monitored and/or controlled by the experiment. These
include not only environmental parameters such as temperature and pressure but also detector operating
conditions, such as voltage, drift velocity etc.

10see: E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley 1995.
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Electronics– All electronics parameters and specifications such as nominal gain, sampling time, shaping
time, etc. are included. This interface can also be extended to include derived parameters such as channel
gains and time offsets derived from calibration runs. It should be noted that these types of parameters may
also be, or rather be, located in the Slow Controls data base if they are found to fluctuate over the course of
the experiment. NOTE:The individual channel time offsets are not yet implemented.

Magnetic Field– Provides access to the magnetic field components at any position specified by its global
coordinate. It should be noted that it is currently assumed that the TPC Local Coordinate system and the
Global system coincide exactly.

Gas/Ionization– This is currently not contained in an interface but a generic stand-alone class which
contains the gas parameter listings for three gases:

� Ar

� P10 (Ar:CH � 90:10)

� NeCO � (90:10)

Parameters for a HeC � H � (50:50) mixture are pending. Should it become necessary, the
���
� � class can be

split into two components—a gas data base and the calculation portion. Currently it is implemented as a
single class, for reasons of efficiency. See 15.3 for more details.

8.3.2 Coordinate Transformations

The transformation between coordinate systems requires information of not only the geometrical layout
of the detector, but also control parameters. It should be noted that even calibration offsets due to sector
alignment and electronics offsets may also be important. Although it is possible to incorporate such values
in the current design, they are not currently implemented.

In general, when a transformation is required, there is no need for knowledge of the intermediate steps
of the calculations. One knows the name of the coordinate available, and the one required. In order to
make the transformations simple, a functor11 was defined which encapsulated all the real transformation
calculations behind a single overloaded operator “()”. This structure allows the same form of the function
call between any of the six allowed transformations:

� TPC Raw � TPC Local

� TPC Local � Global

� TPC Raw � Global

11A generic name for a class which contains only functions with few or no data members.
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with the last being trivial calls of the former two. As mentioned previously, the transformations are depen-
dent on parameters which are accessible via the data bases. Thus in order to instantiate the transformation
functor, an StTpcGeometry and StTpcSlowControl data base (interface) needs to be specified.
Currently the individual electronic channel time offsets are not implemented, but it is a straight forward
addition.

9 Mode of Simulation

This section describes in detail the processes that are modeled, and the algorithms and methods that im-
plement the physics. Technical details of the implementation are not included as this is discussed in sec-
tions 15–16. As mentioned previously a single process is mapped directly to a single class structure, where
possible.

9.1 Ionization Process

The classes that deal with the raw ionization components within the package is capable of manipulating
ionization distributions either generated from an external package (i.e. GEANT), or given the momentum
vector of a particle, generate the ionization in the active detector volume internally according to basic
parameters of the fill gas in the chamber.

In normal operations, the ionization for each TPC sub-volume is taken according to the g2t tpc hit
structures. This large segment is then broken up into pieces, according to an exponential distribution which
has a mean value characterized by the mean free path, between ionizing interactions, of a charged particle
within the gas. This distribution, which specifies the distance to the next interaction is given by:

����� ����� 	 � � ����
(2)

where �
�

is the mean free path. It is derived from the number of ionizing collisions which occur per unit
distance, �

	 . The mean free path is then given by 1/ �
	 . This gives rise to a distribution of ionizing interactions

per unit distance which is Poissonian in character.

At each interaction point a single “primary” electron is produced. These electrons will have an energy
distribution given by the Rutherford scattering formula. In the case of free

	 � 	 �
scattering (or at high

momentum transfer where the binding energy can be neglected), this implies an energy (E) distribution
which varies as E

���
. Because the electrons are not, strictly speaking, free but rather bound to the atoms

of the medium (in our case the TPC gas) via a finite potential, there is a modification to this energy de-
pendence which is medium dependent. This dependence has been measured experimentally and can be
quite accurately parameterized by a function of the form E

��

.12 For Ar, it is found experimentally that

n=2 is a good approximation. A similar behavior is expected for P10 which is 90% Ar. For lighter gases, n
increases. For example, Ne requires n=2.2, and He, n=2.6. This “stiffening” of the primary electron energy
spectrum is a consequence of the higher binding energies of the lighter gases, however it has the desirable
effect of decreasing the width of the Landau distribution as lower Z gases are used. The reason is that
although fewer secondary electrons are produced, the spread in the energy distribution is smaller, and this

12see: H. Fischle et al., NIM A301 (1991) 202; and B. Lasiuk NIM A409 (1998) 402.
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9 MODE OF SIMULATION 9.1 Ionization Process

compensates for the degradation in statistics. For this reason, resolution of dE/dx measurements are nearly
constant, independent of the gas type used (to first order).

The energy dependence of the primary electrons is important because it determines the amount of subse-
quent ionization that is generated. For those primaries that have an energy above the ionization potential of
the medium, which is typically the order of 10s of eV, subsequent electrons (secondaries) can be generated.
The number of secondaries N ����� is then given by:

� ����� � �����
	���������
(3)

where E
�

is the energy of the primary electron, I
�

is the ionization potential of the medium and W is
the amount of energy necessary to create an

	 � 	���� 	 pair. This is an “effective” quantity which is very
difficult to calculate from first principles and therefore must be measured for each gas mixture individually.
It is found that in most cases, except where the energy of the particle is very small, the amount of energy
required to produce an

	 � 	���� 	 pair is independent of the energy of the incident particle. This is seen in
figure 1.13
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Figure 1: The average energy
�

spent (in eV) for the creation of one electron-ion pair in Ar and Xe
as a function of the incident energy of the ionizing particle (in this case, an electron). Dashed lines are
extrapolations to higher energies.

The total number of electrons produced per interaction is then given as the sum of the primaries and
secondaries. Thus calculating the number of electrons generated in a specific length convolutes two
distributions—a Poissonian which determines the number of interactions, and an E

��

which determines

the majority of the yield. This procedure results in a Landau-like distribution—which is expected for the
yield of ionization in a given path length. Results for Ar and Ne are shown in figure 2. Once the ionization
is generated, or distributed into smaller segments, it may then be transported to the multi-wire proportional
chamber (MWPC).

13From W. Blum and L. Rolandi Particle Detection with Drift Chambers Springer-Verlag 1994.
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9.2 Charge Transporter 9 MODE OF SIMULATION

Figure 2: Ionization statistics for primary, secondary, and total yield distributions for Ne (left panel) and
Ar (right panel). All yields are from a path length of 1.95 cm which is the pad length in the outer part of
the TPC super-sector.

9.2 Charge Transporter

The charge, or ionization, in the segments that have been produced must be transported to the sense (anode)
wires of the MWPC for read-out. This transport is modeled in the Charge Transporter component of
TRS, and three distinct processes are described:

� E � B Effect.

� Transverse and Longitudinal Diffusion.

� Charge Loss through

– Absorption through attachment (O � ).

– Gating Grid Transparency.

and it is possible to control each process independently. The charge transporter calculates the position
of the charge segment/electron at the z-plane of the anode/sense wire grid and the amount of charge that
arrives. This charge must then be collected and amplified on the anode wires. In the current implementation
(i.e. FAST) the charge is simply projected in the z coordinate to the position of the anode/sense wire plane;
the underlying assumption that the ionization follows the

��
field lines and no distortions are visible. This

will be refined in future versions.
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9.2.1 E � B Effect

NOTE: not currently implemented!

A misalignment between the electric and magnetic fields or inhomogeneities in the magnetic field can give
rise to the ionization following trajectories which are not parallel to the

��
field lines. This introduces

distortions into the trajectories of ionization left in the chamber. These are collectively known
�� �

��
distortions. In the general case of a charged particle in the presence of an electric and magnetic field, it will
not follow a trajectory which is described by the Langevin equation:

���
��� � �� �����	� ��
 � 	�� � (4)

where � is the charge of the particle, � is its mass, v is its velocity, E the electric (drift) field, B the
magnetic field, and � is the average time between collisions with the molecules in the medium. The last
term is essentially a frictional force that limits the maximum average drift velocity. The steady state solution
(i.e.

���
��� ���

) is given by:

� � ��� � �
� ��� � � � ������	� � ���� � �
 ����� � � � ��������
 � �
 �

(5)

where � � � �"!# �
is the electron mobility and

� � � �%$# �
is the cyclotron frequency. Although in the

ideal field cage structure of a TPC, the electric and magnetic fields are parallel and the drift direction is
defined by the electric field vector. Deviations from this idealization introduces velocity components in the
orthogonal directions.

Equation 5 allows the drift velocity to be calculated at any arbitrary spatial point given knowledge regarding
the electro-magnetic field vectors and the mobility of electrons in the gas. The distortions can then be mod-
eled either by numerically integrating the equation over the drift time of the ionization, or parameterizing
the displacement of the ionization in the plane orthogonal to the

��
field.

9.2.2 Diffusion

The effects of diffusion are due to thermal motion of the molecules in the gas and multiple scattering of
the ionization in the transport from the position of deposition in the chamber to the read-out or sense wires
on the pad plane. While the mean position of a charge segment may be transported through a volume with
arbitrary electro-magnetic fields according to equation 5, its profile will broaden in proportion to the drift
length, or more appropriately, the square root of its drift length. It is possible to parameterize the evolution
of the size of the charge distribution (its width) in terms of a diffusion coefficient, which is in principle,
different in the transverse ( �'& ) and longitudinal ( �'( ) directions. This distinction is important because the
evolution of the diffusion coefficient in the transverse direction also depends on the presence of an magnetic
field where it is reduced according to:

�') � 
 � � � &
� ��� � � � (6)

Once the charge segment/cloud is transported to the read-out plane, each segment (or sub-component) can
be distributed according to a Gaussian (or any other) distribution characterized by a width derived from
the diffusion constants. Increasing the granularity of the charge distribution will better reproduce single
electron statistical fluctuations.
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9.2.3 Charge Absorption

The absorption of charge is a complex process that can be attributed to many different mechanisms.14 For
our application we consider a simple parameterization of charge attachment in a gas where trace amounts
of oxygen are present. The probability (P) for attachment to occur in a specified drift time, t, is given by:

� � � ��� � 	 	 ��� �
(7)

where A specifies an attachment rate given by:

� � ���
�
� ��� �	� �

��

�

(8)

where P
� � and P

�
are the partial pressures of the oxygen and TPC gas respectively. C

� � 

�

specifies an
attachment coefficient which is a function of the gas in question and the reduced electric field (E/p). For
the case of STAR, a value of C = 10.2 � s

��
bar

���
has been deduced.15 To give an idea of the order of

magnitude, for a concentration of oxygen of 50 ppm and an ionization cloud drifting for 50 � s, the charge
loss is expected to be approximately 2.5%. This charge loss can be applied at the single electron level or
an extended charge cloud where a fraction of the total is lost.

9.2.4 Wire Grid Transparency

As the charge enters the region of the wire grids in the TPC, there is a non-zero probability that the charge
may not be transmitted due to the potential configuration on the wire grids. In the STAR TPC there are
three wire grids:

� anode/sense—responsible for charge collection and amplification.

� zero/frisch—defines the boundary of the field cage and allows a sink for ion collection in the ampli-
fication process.

� gate—switch which controls passage of ionization from the active TPC volume to the sense/anode
wire plane.

The passage of ionization is controlled by the potential which is applied to the gate wires. Basically by
setting the appropriate potential on this grid, the drift

��
lines can be made to terminate on the gating grid

(zero transparency) or at the anode wires (full transparency). The transparency is the fraction of lines that
terminate on the anode wires compared to those that terminate on the gating grid.

A general expression for the transparency of a mono-stable switched gating grid was deduced such that
the full range from 0-100% transmission can be modeled. It should be noted that the effects of a bi-polar
switching grid (which is the actual construction of the STAR-TPC) should not influence the values at more
than the

�
5% level. The expressions involved require only the geometry of the wire grids and the voltages

set on the gating grid and high-voltage plane. An example of the transmission curve is shown in figure 3.

14Details contained in a soon to be added appendix.
15soon to be added appendix.
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Figure 3: Wire Grid Transparency Calculation for nominal wire potentials and STAR outer sector read-out
chamber geometry.

9.3 Charge Collection

According to the position of the charge segment/electron at the anode wire plane, the ionization can be
collected by the nearest wire. The appropriate time delays for charge collection should a segment not be
projected directly on top of the wire position can be calculated. Once the charge is assigned to a wire, the
gas amplification can occur.

9.3.1 Gas Gain Amplification at Sense Wires

The process of gas amplification at the sense wires is modeled by the Raether distribution,16 or, as it is
denoted in Blum and Rolandi17, the Yule-Furry process which describes the fluctuations in the amplification
an amount of charge q with an exponential distribution:

� �
�
��� �

��
	 ��� � �� (9)

Subsequent theoretical refinements to this simple expression which were made in order to take into account
effects like the asymmetric growth of the avalanche profile as well as saturation effects. This resulted

16see http://www.rhic.bnl.gov/STAR/html/comp l/simu/TpcRespSim/src/literature.html
17W. Blum and L. Rolandi Particle Detection with Drift Chambers Springer-Verlag 1994.
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in several distribution, the Polya distribution being the most popular. It requires an additional parameter
to supplement the mean amplification ( �� ). The effect of the additional parameter is to suppress the small
amplification factors. As this parameter tends to zero, the Raether distribution is recovered. Experimentally,
perfectly exponential behavior is seen at low to moderate gas gains (i.e. � 10 � ), in parallel plate geometry,
however at gas gains above 10

�

, slight deformation from exponential shape is observed. This is probably
attributable to self-saturation effects which become important because of space charge. Since the TPC is
generally operated at low gas gains, the simple Raether distribution was deemed acceptable, however the
Polya function may be substituted if there is need.

It should be noted that in TPC (or any drift chamber) operation, the effect of the fluctuations in gas gain is
to simply degrade the attainable space-point resolution, and for this purpose the exact functional form of
the avalanche yields is not absolutely critical. This degradation is the physics that the implementation of
the gas-gain fluctuations will attempt to address, and the Raether distribution should be quite acceptable in
this regard.

Once the charge has been amplified, the amount of charge induced on the cathode pad plane can then be
calculated.

9.4 Analog Signal Generation

The Analog Signal Generator has three main functions:

� Determine the charge induced on single pads from the charge “collected” on the anode wires.

� Sample the induced charge signals in time according to the electronics (i.e pre-amplifier/shaper)
response.

� Distribute the analog charge into time bins according to the parameters of the switched capacitor
array (SCA).

9.4.1 Charge Induction

The charge induced on a grounded pad plane by a point charge � located a distance
�

above the plane can
be calculated by the method of images. The charge density ( � ) on the plane is given by:

�
��� ��� � � ���� �

�
����� 	 ��� � � � � � 	 � ��� � � � � � � ��� (10)

where the charge � is located at a position (x
�
,y
�
). However this expression is not the solution for the

charge induced on the pad plane of a wire chamber. In the case of a MWPC the charge, which is at the
position of the anode wire, is generally surrounded by two cathode planes—one from above and one from
below.18 Thus in order to calculate the charge density induced on the pad plane, all higher order multi-pole
terms must be incorporated. This results in the following expression:

�
��� ��� � � ����

�	



� � 	 � � � �
�

� ��� 	 � � � � � � � 	 � � � � � � � � 	 � � � � � � � � ��� (11)

18Also the charge is in the form of a line charge associated with a linear charge density, not a discrete point charge.
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9 MODE OF SIMULATION 9.4 Analog Signal Generation

Doing the sum, (and integrating over all y) yields a function which describes the charge distribution induced
on the pad plane at a distance

�
from the wire where

� �
is the position of the charge � :

�
��� ��� � � �� �������	� ��
 ����������

� �
� (12)

This function, an inverse hyperbolic cosine as shown in equation 12 is called an Endo function. Note that
the derivation put no limits on the extent of the pad in the y direction (i.e. �  � �

). The effect of finite
geometry of segmented cathodes can be accounted for with the addition of another parameter. The same
function can be written in a form more instructive for our purposes:

�
����� � �

�
� 	�������� � � 
  � � � � �

� �
�

� ��������� � � 
  � � � ���
� �

� (13)

where K � is a normalization constant. Equation 13 can be used to generalize the Endo function in or-
der to account for finite geometry effects of the segmented cathode pads. That is, each pad has a finite
width/length ratio. This can be accounted for with the addition of another constant K � :

� ��� � ���
�

� 	�������� � � 
 ������ � �
� �

�

� � � � ������� � � 
 ����������� �
� (14)

This is the generalized solution to the distribution of charge induced on a grounded pad plane by a point/line
charge, and is usually dubbed, the Gatti function. The Gatti function is most prevalently used for pad
chamber responses. Although more accurate, the price that is paid is the increase in time required to
integrate equation 14 over the rather simple expression which can be deduced from the integral of 12 A
comparison of the Gatti and Endo functions to a Gaussian (for reference) are given in figure 4

For the case of the TPC, the quantity of interest is the total amount of charge ( � ) induced per pad which
means one must integrate these functions, which specify the charge density, according to the pad dimen-
sions. Thus for a point charge (equation 10), the integral is:

� � ����
��� �
� 

� � �
� 

��� � � �
�

� ��� 	 � � � � � � � 	 � � � � � � � � � ��� (15)

where
�"!

and
��#

denotes the lower and upper bounds of the pad in the x direction respectively. Similarly � !
and � # denotes the same in the y direction. Similar integrals can be constructed given any arbitrary charge
density ( � ). The advantage of using such functions is that they allow the production of longer tails which
have non-Gaussian characteristics. The tails are an important characteristic to understand as they determine
the efficiency of the ionization collection which is very important in the study of ionization collection for���
� � resolution. Furthermore these integrals are well defined given the the position of the charge and the
coordinates of the pads. Thus charge induced on adjacent pads as well as rows can be also be calculated
quite simply in this formalism. Illustrations of some of these function are shown in figures 4.19

Please keep in mind that the fact that the signal on the wire is due almost exclusively to the motion of
the charged ions away from the wire. In order to calculate the total amount of charge induced on the pad
however, it is possible to use the number of electrons as a quantity, even though they are not the physical
reason for the charge induction. This point will be reiterated in the electronics response of this description.

19For more details see: http://www.rhic.bnl.gov/STAR/html/comp l/simu/TpcRespSim/src/literature.html
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Figure 4: Comparison of Gaussian, Endo, and Gatti functions for profiles of the pad-response-function.

9.4.2 Sample the Signal in Time

Once the amount and centroid of the charge distribution on each pad is determined, this charge can be
sampled in time corresponding to the analog electronics response. The signals are generated by super-
imposing each analog signal from each avalanche which induces a signal on the pad plane. This allows
the shaping time of the electronics can be varied independently of the width of the pad response function
which is the strength of this simulation methodology. Currently four types of sampling are possible:

� delta function.

� Symmetric Gaussian.

� Asymmetric Gaussian.

� Parameterized STAR response.

A function also exists where a fractional scale of the total charge integral can be added as an Under-
shoot/Unrestored baseline component in the signal which has the effect of convoluting effects from the
long 1/T tail. This is an important point and one that actually blurs the line of physics and simulation. In
reality the time evolution of the signal that is developed on the wires is nearly entirely due to the motion of
the positive ions away from the wire. This produces a signal with a long 1/T tail. For the STAR geometry
the signal is

�
62 � s. In order to make a detector faster, the signal is differentiated after a characteristic

time—the shaping time of the pre-amplifier. Although the detector response becomes faster, the trade-off
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is that only a fraction of the total charge is seen by the downstream electronics (i.e. the ADC). This fraction�
, is given by:

� �
! 	 � � � ���� � �! 	 � � � �

�� � � (16)

where t # is the length of time the undifferentiated signal would persist (i.e.
�

62 � s), t
�

is the characteristic
time of the signal development (i.e.

�
1 ns), and t � is the shaping time of the pre-amplifier (i.e.

�
180 ns).

For STAR this implies the order of 45% of the charge is distributed into time bins by the SCA. More
importantly is that the signal shape is dominated very strongly by the shaping properties of the electronics.
Thus the long time response of the chamber is parameterized in the electronics processing component of
the simulator, rather than modeling the motion of the positive ions.

The symmetric Gaussian response, with the effect of an unrestored baseline due to under/over shoot is
illustrated in figure 5 where the time evolution of a series of 20 signals, of identical amplitude, are induced

Figure 5: Asymmetric Gaussian Electronics Response with pedestal suppressed showing both undershoot
(top panel) and an under damped baseline restoration (bottom panel).

on a single pad.20 The pulses are simply added using the principle of super-position. The modeling of an
unrestored baseline is very important since the pulse height (actually the integral) of the signal is used as a
measure of the velocity of the particle (via

���
� � information). An unrestored baseline due to undershoot can

result in an effective loss of charge in a high-multiplicity environment. Conversely an unrestored baseline
due to under-damping will result in too much charge being observed at large drift distances. Both effects
will reduce the attainable resolution if not taken into account.

20More examples can be seen at: http://www.rhic.bnl.gov/STAR/html/comp l/simu/TpcRespSim/src/literature.html
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9.5 Digital Signal Generation 11 KNOWN LIMITATIONS

Once the complete functional form of the signals induced on a pad over the read-out period of the TPC
electronics, the analog charge can be distributed into discrete time bins. This sampling simulates the
behavior of the switched capacitor array (SCA) in the front-end electronics. This is done by integrating the
amount of charge in a time interval

�
t, which is determined from the SCA sampling frequency. Chamber

noise as well as electronic noise can be added at this point.

9.5 Digital Signal Generation

Once the analog charge is distributed into time bins on the pads, the digitization can occur. This is currently
a simple conversion from voltage to ADC counts. Other features such as the addition of a pedestal and
non-linearities in the ADC can also be added. In fact, any characteristic of the digital electronics can be
added and will be independent of the analog signal sampling. This is very close to the way the front-end
electronics are designed where the digital and analog electronic components are separated.

10 Physics Limitations

There are still some components either not implemented, or completely missing from TRS in its current
form. It is hoped that these will be incorporated as the understanding of TRS evolves. Most critically is
the noise. Although some preliminary work exists for this modeling, it has currently not reached a mature
enough state where it can be added. Some obvious short-comings are listed below.

�

�� �
��

in not tested although code exists and can be ”plugged” in.

� Noise at the chamber and electronics level does not yet exist.

� A function (or look-up table) is needed for the non-linear ADC response.

� The pad geometry is not incorporating the fractional pads at the border of the sectors.

� The gas gain is currently independent of the wire and the position of the avalanche on the wire.

� Effects of space charge in the charge transport stage of the simulation.

� No positional dependence in the transparency of the gating grid exists. Currently a constant trans-
parency, independent of position is calculated.

It is almost certain that as experience is gained with the package, this list will be further expanded, however
the code is written in a flexible manner such that these type of additions should be relatively straight
forward.

11 Known Limitations

To be seen...
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12 Support and Reporting Bugs

Currently TRS is supported by a small group. Hopefully as more people begin to use it and add to it, there
will be a larger support base for it. If there is a problem or bug, report it to one or more of the following:

� starsas-l@bnl.gov

� starsofi-l@bnl.gov

� startpc-l@bnl.gov

� brian.lasiuk@yale.edu

� thomas.ullrich@yale.edu

27



Part II

Reference Manual
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13 DATA BASE AND INTERFACES

This reference manual is broken into six sections. The first section describe the Data Base interfaces and
implementations within TRS. The second describes the Coordinate systems and the Coordinate transfor-
mation functor. The next two sections describe the Containers and Physics Processes that are accessible
and utilized in TRS. The fifth section is not yet complete but will include the Administrative type classes
that are utilized while the final section contains an Example and describes how the package is used in an
example program. Within the categories, as much as possible, the listing of classes are alphabetical, and
closely related classes which either inherit or are derived are cross-referenced.

As mentioned previously, heavy use of the SCL is made within TRS, so that manual is also a useful
reference. It can be found at: http://star.physics.yale.edu/SCL. As such, many conventions adopted in the
SCL are carried through into TRS in order to ensure compatibility. As namespaces are not currently
supported widely among vendor or commercial compilers, the current STAR conventions advocate the
addition of prefixes to indicate the scope of a class. St denotes all STAR specific classes. This prefix is
supplemented with Trs to denote TRS specific classes where appropriate. As an extension, the prefix Tpc
is also used occasionally.

13 Data Base and Interfaces

Following are descriptions of the four different data base interfaces and implementations.

13.1 StMagneticField

Summary Interface which defines access methods to the magnetic field components.

Synopsis Purely abstract class, no instantiation is possible.

Description Class StMagneticField is an abstract class that defines the interface that is used to
access the magnetic field components.

Persistence None

Related Classes The implementation of the magnetic field data base is done in the class StSimple-
MagneticField. See section 13.2.

Dependencies Requires StGlobalCoordinate from TRSStThreeVector from the SCL .

Public
Constructors

None

Public
Virtual Operators

None

Public Virtual
Member Functions

virtual const StThreeVector<double>&
at(const StGlobalCoordinate& gp)
Provides access to the magnetic field components in an StThreeVector at a position,
gp specified in the STAR global coordinate system.
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13.2 StSimpleMagneticField 13 DATA BASE AND INTERFACES

13.2 StSimpleMagneticField

Summary Implementation of a simple data base which provides the magnetic field compo-
nents which are read from an ASCII file.

Synopsis #include "StSimpleMagneticField.hh"
requires StGlobalCoordinates.hh from TRS. StThreeVector.hh as
well as StGetConfigValue are required from the SCL. TheSystemOfUnits
class in the SCL is also used to ensure a uniform usage of the unit types.

Description Class StSimpleMagneticField is a concrete class that implements methods defined
by the abstract base class StMagneticField (see section 13.1). Values of the
field are accessed given a global coordinate (StGlobalCoordinate) as de-
scribed in section 14.1. The field value is returned as a StThreeVector which
is currently of double precision. The implementation of the ”simple” data base
uses the StGetConfigValue utility from the SCL which parses an ASCII file
which reads the numerical value of the magnetic field specified by a key word. The
field values are kept as data members, and the access functions simply return the
value. This initialization is done in the private constructor(s). Currently a constant
field with the field components specified as (B � ,B � ,B � ) given as (0,0,.5) Tesla, at
any coordinate, is implemented. The data base is implemented as a singleton class
which protects the code against multiple distinct copies of the data base parame-
ters in the code. As such the class constructors are implemented as private data
members which are called via a public member function:

Persistence None

Related Classes The base class which defines the interface is specified in the class StMagneticField.
See section 13.1.

Public
Constructors

static StMagneticField* instance(const char* file)
Returns a pointer of type StMagneticField. The static designation implies at
most, one instance of this can occur. The pointer will be returned if and only if a
file name (file) suitable to initialize the class is specified. Such a file is provided in
TRS in the run directory (run/example.conf). Subsequent declarations of magnetic
fields can be made in the code, but once the first instance is created, the same
pointer will be returned.

static StMagneticField*
instance(const StThreeVector<double>& B)
Returns a pointer of type StMagneticField. The static designation implies at
most, one instance of this can occur. The pointer will be returned if and only if an
StThreeVector, B is supplied which will specify the field components at every spa-
tial location. This is useful if a constant field is required. Subsequent declarations
of magnetic fields can be made in the code, but once the first instance is created,
the same pointer will be returned.

static StMagneticField* instance()
Returns the pointer of type StMagneticField should an instance of the class have
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been made previously, otherwise a filename or three-vector need be specified for
the first initialization.

Private
Constructor

The constructors are hidden from direct call to ensure that only one instance of
the data base is made. As such, the constructors are only called through member
functions as described above. The actual constructors which are called are:

StSimpleMagneticField(const char* file)
Called from the member function instance(const char* file) which is
only invoked if a previous instance is not detected. The parsing of the ASCII file is
done in this constructor to initialize the data members. The file is provided in the
run directory of the package.

StSimpleMagneticField(const StThreeVector<double>& B)
Called from the member function instance(const StThreeVector � double � & B) if
and only if a previous instance is not detected. The data member which stores the
magnetic field is initialized in this constructor.

StSimpleMagneticField()
Never called, rather the member functioninstance() returns the StMagneticField
pointer which was created by a previous instance. No initialization of data members
is done in this constructor.

Public
Operators

None

Public
Member Functions

Following are implementations of the functions defined in the interface StMagneticField.

const StThreeVector<double>&
at(const StGlobalCoordinate& gp) const

Returns the magnetic field components in an StThreeVector at a position, gp
specified in the STAR global coordinate system.

const StThreeVector<double>&
at(const StThreeVector<double>& gp) const

Returns the magnetic field components in an StThreeVector at a position, gp
specified in the STAR global coordinate system.

Examples #include <iostream.h>
#include <unistd.h> // needed for access()
#include <string>

// SCL
#include "SystemOfUnits.h"

// TRS
#include "StCoordinates.hh"
#include "StSimpleMagneticField.hh"

int main()
{

// Check File access

string magFile("../run/example.conf");
if (access(magFile.c_str(),R_OK)) {
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cerr << "ERROR:\n" << magFile << " cannot be opened" << endl;
exit(1);

}

// Create an instance of the DataBase

StMagneticField *magDb =
StSimpleMagneticField::instance(scFile.c_str());

// Print the data base to the screen

magDb->print();

// Access to the field at a spatial point

StGlobalCoordinate
myCoordinate(0.*centimeter, 0.*centimeter, 0.*centimeter);

StThreeVector<double> field = magDb->at(myCoordinate);

cout << "Magnetic Field at " << myCoordinate << " is "
<< field << " T." << endl;

return 0;
}

Programs Output:

To be run
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13.3 StTpcElectronics

Summary Interface which defines access functions to electronics specific constants or param-
eters.

Synopsis Purely abstract class, no instantiation is possible.

Description Class StTpcElectronics is an abstract base class that defines the interface
that is used to access all TPC electronics related parameters. This includes both the
analog and digital components of the TPC electronics.

Persistence None

Related Classes The implementation of the electronics data base is done in the class StTpcSimpleElectronics.

Public
Constructors

None

Public
Virtual Operators

None

Public Virtual
Member Functions

Analog Electronics
virtual double nominalGain() const
Provides access to the nominal gain of the pre-amplifier in mV/fC.

virtual double channelGain(int s,int r,int p) const
Provides access to the individual channel gain of the pre-amplifier indexed by the
sector (s), pad row (r), and pad (p). This function should be more relevant once an
electronics gain calibration has been done.

virtual double channelGain(StTpcPadCoordinate& c) const
Provides access to the individual channel gain of the pre-amplifier indexed given a
StTpcPadCoordinate (c). See section 14.4.

virtual double shapingTime() const
Provides access to the shaping time of the pre-amplifier shaper.

virtual double samplingFrequency() const
Provides access to the sampling frequency of the switched capacitor array (SCA) .

Digital Electronics
virtual double adcConversion() const
Provides access to the nominal ADC conversion value.

virtual double adcConversionCharge() const
Provides access to the nominal ADC conversion value.

virtual int averagePedestal() const
Provides access to the nominal pedestal value for the ADC.

virtual int pedestal(int s,int r, int p, int t) const
Provides access to the pedestal value for a single ADC channel indexed by a sector
(s), pad row (r), pad (p), and time bin (t). Should be more relevant once a real
electronics calibration has been done.
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virtual int pedestal(StTpcPadCoordinate&) const
Provides access to the pedestal value for a single ADC channel specified by a raw
pad coordinate. See section refsec:rawCoordinate.

Diagnostic
virtual void print(ostream& = cout) const
Prints the values of all constants accessible by public access functions to an output
file stream. The default is the screen.

Examples None
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13.4 StTpcGeometry

Summary Interface which defines access functions to geometrical specific constants or pa-
rameters.

Synopsis Purely abstract class; instantiation is not possible.

Description Class StTpcGeometry is an abstract base class that defines the interface that is
used to access all geometrical parameters related to the TPC including the field
cage, pad-plane, and read-out chamber.

Persistence None

Related Classes The implementation of the geometry data base is done in the class StTpcSimpleGeometry.

Public
Constructors

None

Public
Virtual Operators

None

Public Virtual
Member Functions

Rows
virtual int numberOfRows() const
Provides access to the number of rows in a single super sector.

virtual int numberOfInnerRows() const
Provides access to the number of rows in the inner part of a super sector.

virtual int numberOfInnerRows48() const
Provides access to the number of rows in the inner part of a super sector where the
row pitch is 48 mm.

virtual int numberOfInnerRows52() const
Provides access to the number of rows in the inner part of a super sector where the
row pitch is 52 mm.

virtual int numberOfOuterRows() const
Provides access to the number of rows in the outer part of a super sector.

virtual double innerSectorRowPitch1() const
Provides access to the pitch of the rows in the 8 innermost pad rows of the inner
super sector.

virtual double innerSectorRowPitch2() const
Provides access to the pitch of the rows in the 5 outermost pad rows of the inner
super sector.

virtual double outerSectorRowPitch() const
Provides access to the pitch of the rows in the outer part of a super sector.

virtual int numberOfPadsAtRow(int r) const
Provides access to the total number of pads in row, r of a super sector.

virtual double radialDistanceAtRow(int r)
Provides access to the radial distance to the center of the mid-point of a pad row, r
in a super sector.
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Time buckets
virtual int numberOfTimeBuckets() const
Provides access to the number of time bins on a single pad.

Pads
virtual double innerSectorPadWidth() const
Provides access to the geometric width of a single pad in the inner part of a super
sector.

virtual double outerSectorPadWidth() const
Provides access to the geometric width of a single pad in the outer part of a super
sector.

virtual double innerSectorPadLength() const
Provides access to the geometric length of a single pad in the inner part of a super
sector.

virtual double outerSectorPadLength() const
Provides access to the geometric length of a single pad in the outer part of a super
sector.

virtual double innerSectorPadPitch() const
Provides access to the pitch of the pads in the inner part of a super sector.

virtual double outerSectorPadPitch() const
Provides access to the pitch of the pads in the outer part of a super sector.

Sector Dimensions
virtual double innerSectorEdge() const
Provides access to the radial distance of the edge of the inner part of a super sector
closest to the inner field cage.

virtual double outerSectorEdge() const
Provides access to the radial distance of the edge of the outer part of a super sector
closest to the outer field cage.

virtual double ioSectorSpacing() const
Provides access to the distance between the inner and outer parts of a super sector.

Wire Plane
virtual double anodeWireRadius() const
Provides access to the radius of the anode sense wires of the MWPC.

virtual double frischGridWireRadius() const
Provides access to the radius of the wires which make up the zero potential wire
grid (frisch grid) of the MWPC.

virtual double gateWireRadius() const
Provides access to the radius of the wires which make up the gating grid of the
MWPC.

virtual double anodeWirePitch() const
Provides access to the pitch of the anode wires in the MWPC.
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virtual double frischGridPitch() const
Provides access to the pitch of the wires which make up the zero potential (frisch)
grid of the MWPC.

virtual double gatePitch() const
Provides access to the pitch of the wires which make up the gating grid of the
MWPC.

virtual double
innerSectorAnodeWirePadPlaneSeparation() const

Provides access to the separation distance between the anode wires and the pad
plane in the inner part of a super sector.

virtual double
innerSectorFrischGridPadPlaneSeparation() const

Provides access to the separation distance between the zero potential (frisch) wire
grid and the pad plane in the inner part of a super sector.

virtual double
innerSectorGatingGridPadPlaneSeparation() const

Provides access to the separation distance between the gating grid wire grid and the
pad plane in the inner part of a super sector.

virtual double
outerSectorAnodeWirePadPlaneSeparation() const

Provides access to the separation distance between the anode wires and the pad
plane in the outer part of the super sector.

virtual double
outerSectorFrischGridPadPlaneSeparation() const

Provides access to the separation distance between the zero potential (frisch) wire
grid and the pad plane in the outer part of the super sector.

virtual double
outerSectorGatingGridPadPlaneSeparation() const

Provides access to the separation distance between the gating grid wire grid and the
pad plane in the outer part of the super sector.

virtual int
numberOfInnerSectorAnodeWires() const

Provides access to the number of anode wires in the inner part of the super sector.

virtual double
firstInnerSectorAnodeWire() const

Provides access to the radial distance to the first anode wire at the centroid of the
inner part of a super sector.

virtual double
lastInnerSectorAnodeWire() const

Provides access to the radial distance to the last anode wire at the centroid of the
inner part of a super sector.
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virtual double
innerSectorAnodeWire(int w) const

Provides access to the radial distance to the anode wire number, w.

virtual int
numberOfOuterSectorAnodeWires() const

Provides access to the number of anode wires in the outer part of a super sector.

virtual double
firstOuterSectorAnodeWire() const

Provides access to the radial distance of the first anode wire in the outer part of a
super sector.

virtual double
lastOuterSectorAnodeWire() const

Provides access to the radial distance to the last anode wire in the outer part of a
super sector.

virtual double
outerSectorAnodeWire(int w)

Provides access to the radial distance to the anode wire w in the outer part of a
super sector.

General – Field Cage
virtual double frischGrid() const
Provides access to the z-position of the zero potential (frisch) grid with respect to
center of the TPC volume.

virtual double driftDistance() const
Provides access to the maximum drift distance of ionization within the field cage
volume.

virtual double ifcRadius() const
Provides access to the radial distance to the inner field cage electrodes.

virtual double ofcRadius() const
Provides access to the radial distance to the outer field cage electrodes.

virtual double endCapZ() const
Provides access to the z-coordinate of the end-cap of the TPC.

virtual bool
acceptance(StThreeVector<double>& c) const

Provides a boolean value that indicates whether a position as specified by the
StThreeVector, c lies within the confines of the TPC field cage/active-volume.

virtual void print(ostream& os = cout) const
Diagnostic function which prints all constants within the data base accessible by
member functions to a file stream. The default is the screen.
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13.5 StTpcSimpleElectronics

Summary Implementation of a simple data base which provides electronics specific constants
or parameters which are read from an ASCII file.

Synopsis #include "StTpcSimpleElectronics.hh"
Requires StGetConfigValue from the SCL. The SystemOfUnits class in
the SCL is also used to ensure a uniform usage of the unit types.

Description Class StTpcSimpleElectronics is a concrete class which implements meth-
ods for the access functions defined in the abstract base class StTpcElectronics.
The implementation of the ”simple” data base uses the StGetConfigValue
utility from the SCL which parses an ASCII file, provided in the run directory
(run/electronics.conf) and reads the numerical value of the parameters which are
specified by a key word. The parameters are kept as data members, and the access
functions simply return these values. The data base is implemented as a singleton
class which protects the code against multiple distinct copies of the data base pa-
rameters in the code. As such the class constructors are implemented as private
data members which are called via a public member function.

Persistence None

Related Classes The base class which defines the interface is specified in the class
StTpcElectronics.

Public
Constructors

static StTpcElectronics* instance(const char* file)
Returns a pointer of type StTpcElectronics. The static designation implies
at most, one instance of this can occur. The pointer will be returned if and only if a
file name (file) suitable to initialize the class is specified. Such a file is provided in
TRS in the run directory. Subsequent declarations of magnetic fields can be made
in the code, but once the first instance is created, the same pointer will be returned.

static StTpcElectronics* instance()
Returns the pointer of type StTpcElectronics should an instance of the class
have been made previously, otherwise a filename must be specified for the first
initialization.

Private
Constructors

The constructors are hidden from direct call to ensure that only one instance of
the data base is made. As such, the constructors are only called through member
functions as described above. The constructors which can be called are:

StTpcSimpleElectronics(const char* file)
Called from the member function instance(const char* file) which is
only invoked if a previous instance is not detected. The parsing of the ASCII file is
done in this constructor to initialize the data members.

StTpcSimpleElectronics()
Never called; rather the member functioninstance() returns the StElectronics
pointer which was created by the previous instance. No initialization of data mem-
bers is done.
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Public
Operators

None

Public
Member Functions

Following are implementations of the functions defined in the interface StTpcElectronics.

Analog Electronics
double nominalGain() const
Returns the nominal gain of the pre-amplifier. The value of 16 mV/fC is taken from
STAR Note #230.

double channelGain(int s,int r,int p) const
Returns the individual channel gain of the pre-amplifier in mV/fC indexed by the
sector (s), pad row (r), and pad (p). Should take on more importance when the first
calibration runs for the electronics are available.

double channelGain(StTpcPadCoordinate& c) const
Returns the individual channel gain of the pre-amplifier in mV/fC indexed by given
a StTpcPadCoordinate, c. See section 14.4. Should take on more importance when
the first calibration runs for the electronics are available.

double shapingTime() const
Returns the shaping time of the pre-amplifier shaper. A value of 180 ns is specified
in STAR Note #230.

double samplingFrequency() const
Returns the sampling frequency of the switched capacitor array (SCA) . The value
of 16 mV/fC is taken from STAR Note #230.

Digital Electronics
double adcConversion() const
Returns the nominal ADC conversion value.

double adcConversionCharge() const
Returns the nominal ADC conversion value.

int averagePedestal() const
Returns the nominal pedestal value for the ADC.

int pedestal(int s, int r, int p, int t) const
Returns the pedestal value for a single ADC channel indexed by a sector (s), pad
row (r), pad (p), and time bin (t). Should take on more importance when the elec-
tronics calibration is done.

int pedestal(StTpcPadCoordinate&) const
Returns the pedestal value for a single ADC channel specified by a raw pad coor-
dinate. See section 14.4.

Diagnostic
void print(ostream& = cout) const
Prints the values of all constants accessible by public access functions to an output
file stream. The default is the screen.

Examples #include <iostream.h>
#include <unistd.h> // needed for access()

#include <string>
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#include "StTpcSimpleElectronics.hh"

int main ()
{

// Check File access

string electronicsFile("../run/electronics.conf");
if (access(electronicsFile.c_str(),R_OK)) {

cerr << "ERROR:\n" << electronicsFile << " cannot be opened" << endl;
cerr << "Exitting..." << endl;
exit(1);

}

// Instantiation of the DataBase

StTpcElectronics *electronicsDb =
StTpcSimpleElectronics::instance(electronicsFile.c_str());

// print out the parameters contained in the db

electronicsDb->print();

return 0;
}

Programs Output:

To be run
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13.6 StTpcSimpleGeometry

Summary Implementation of a simple data base which provides geometrical parameters spe-
cific to the TPC field cage, pad-plane, and wire-planes.

Synopsis #include "StTpcSimpleGeometry.hh"
Requires StThreeVector class as well as StGlobals from the SCL . As with
the other data base implementations the SystemOfUnits from the SCL is also
used to ensure consistent set of units is utilized. .

Description Class StTpcSimpleGeometry is a concrete class which implements methods
for the access functions defined in the abstract base class StTpcGeometry. The
implementation of the ”simple” data base uses the StGetConfigValue utility
from the SCL which parses an ASCII file, contained in the run directory (run/TPCgeo.conf)
and reads the numerical value of the parameters which are specified by a key word.
These parameters are taken from two engineering drawings.21 The parameters are
kept as data members, and the access functions simply return these values. This
initialization is done in the private constructors.

Persistence None

Related Classes The implementation of the geometry data base is done in the class StTpcSimple-
Geometry.

Public
Constructors

The data base is implemented as a singleton class which protects the code against
multiple distinct copies of the data base parameters in the code. As such the class
constructors are implemented as private data members which are called via a public
member function:

static StTpcGeometry* instance(const char* file)
Returns a pointer of type StTpcGeometry. The static designation implies at
most, one instance of this can occur. The pointer will be returned if and only if a
file name (file) suitable to initialize the class is specified. Such a file is provided in
TRS in the run directory (run/TPCgeo.conf). Subsequent declarations of magnetic
fields can be made in the code, but once the first instance is created, the same
pointer will be returned.

static StTpcGeometry* instance()
Returns the pointer of type StTpcGeometry should an instance of the class have
been made previously, otherwise a filename must be specified for the first initial-
ization.

Private
Constructors

The constructors are hidden from direct call to ensure that only one instance of
the data base is made. As such, the constructors are only called through member
functions as described above. The constructors which can be called are:

StTpcSimpleGeometry(const char* file)
Called from the member function instance(const char* file) which is

21RHIC-STAR-TPC Inner and Outer Sector Pad Plane Configuration. DWG: 24A0221 Rev B, Rev C. Accessible at:
http://www.rhic.bnl.gov/STAR/html/tpc l/tpc.html
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only invoked if a previous instance is not detected. The parsing of the ASCII file is
done in this constructor to initialize the data members.

StTpcSimpleGeometry()
Never called; rather the member functioninstance() returns the StTpcGeometry
pointer which was created by the previous instance. No initialization of data mem-
bers is done.

Public
Operators

None

Public
Member Functions

Following are implementations of the functions defined in the interface StTpcGeometry.

Rows
int numberOfRows() const
Returns the number of rows in a single super sector.

int numberOfInnerRows() const
Returns the number of rows in the inner part of a super sector.

int numberOfInnerRows48() const
Returns the number of rows in the inner part of a super sector where the row pitch
is 48 mm.

int numberOfInnerRows52() const
Returns the number of rows in the inner part of a super sector where the row pitch
is 52 mm.

int numberOfOuterRows() const
Returns the number of rows in the outer part of a super sector.

double innerSectorRowPitch1() const
Returns the pitch of the rows in the 8 innermost pad rows of the inner super sector.

double innerSectorRowPitch2() const
Returns the pitch of the rows in the 5 outermost pad rows of the inner super sector.

double outerSectorRowPitch() const
Returns the pitch of the rows in the outer part of a super sector.

int numberOfPadsAtRow(int r) const
Returns the total number of pads in row, r of a super sector.

double radialDistanceAtRow(int r)
Returns the radial distance to the center of the mid-point of a pad row r in a super
sector.

Time buckets
int numberOfTimeBuckets() const
Returns the number of time bins on a single pad.

Pads
double innerSectorPadWidth() const
Returns the geometric width of a single pad in the inner part of a super sector.

double outerSectorPadWidth() const
Returns the geometric width of a single pad in the outer part of a super sector.
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double innerSectorPadLength() const
Returns the geometric length of a single pad in the inner part of a super sector.

double outerSectorPadLength() const
Returns the geometric length of a single pad in the outer part of a super sector.

double innerSectorPadPitch() const
Returns the pitch of the pads in the inner part of a super sector.

double outerSectorPadPitch() const
Returns the pitch of the pads in the outer part of a super sector.

Sector Dimensions
double innerSectorEdge() const
Returns the radial distance of the edge of the inner part of a super sector closest to
the inner field cage.

double outerSectorEdge() const
Returns the radial distance of the edge of the outer part of a super sector closest to
the outer field cage.

double ioSectorSpacing() const
Returns the distance between the inner and outer parts of a super sector.

Wire Plane
double anodeWireRadius() const
Returns the radius of the anode sense wires of the MWPC.

double frischGridWireRadius() const
Returns the radius of the wires which make up the zero potential wire grid (frisch
grid) of the MWPC.

double gateWireRadius() const
Returns the radius of the wires which make up the gating grid of the MWPC.

double anodeWirePitch() const
Returns the pitch of the anode wires in the MWPC.

double frischGridPitch() const
Returns the pitch of the wires which make up the zero potential (frisch) grid of the
MWPC.

double gatePitch() const
Returns the pitch of the wires which make up the gating grid of the MWPC.

double
innerSectorAnodeWirePadPlaneSeparation() const

Returns the separation distance between the anode wires and the pad plane in the
inner part of a super sector.

double
innerSectorFrischGridPadPlaneSeparation() const

Returns the separation distance between the zero potential (frisch) wire grid and
the pad plane in the inner part of a super sector.
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double
innerSectorGatingGridPadPlaneSeparation() const

Returns the separation distance between the gating grid wire grid and the pad plane
in the inner part of a super sector.

double
outerSectorAnodeWirePadPlaneSeparation() const

Returns the separation distance between the anode wires and the pad plane in the
outer part of the super sector.

double
outerSectorFrischGridPadPlaneSeparation() const

Returns the separation distance between the zero potential (frisch) wire grid and
the pad plane in the outer part of the super sector.

double
outerSectorGatingGridPadPlaneSeparation() const

Returns the separation distance between the gating grid wire grid and the pad plane
in the outer part of the super sector.

int
numberOfInnerSectorAnodeWires() const

Returns the number of anode wires in the inner part of the super sector.

double
firstInnerSectorAnodeWire() const

Returns the radial distance to the first anode wire at the centroid of the inner part of
a super sector.

double
lastInnerSectorAnodeWire() const

Returns the radial distance to the last anode wire at the centroid of the inner part of
a super sector.

double
innerSectorAnodeWire(int w) const

Returns the radial distance to the anode wire, w.

int numberOfOuterSectorAnodeWires() const
Returns the number of anode wires in the outer part of a super sector.

double
firstOuterSectorAnodeWire() const

Returns the radial distance of the first anode wire in the outer part of a super sector.

double
lastOuterSectorAnodeWire() const

Returns the radial distance to the last anode wire in the outer part of a super sector.

double
outerSectorAnodeWire(int w) const

Returns the radial distance to the anode wire, w in the outer part of a super sector.
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General – Field Cage
double frischGrid() const
Returns the z-position of the zero potential (frisch) grid with respect to center of
the TPC volume.

double driftDistance() const
Returns the maximum drift distance of ionization within the field cage volume.

double ifcRadius() const
Returns the radial distance to the inner field cage electrodes.

double ofcRadius() const
Returns the radial distance to the outer field cage electrodes.

double endCapZ() const
Returns the z-coordinate of the end-cap of the TPC.

bool
acceptance(StThreeVector<StDouble>& c) const

Returns a boolean value that indicates whether a position as specified by the three-
vector c lies within the confines of the TPC field cage/active-volume.

void print(ostream& os = cout) const
Diagnostic function which prints all constants within the data base accessible by
member functions to a file stream.

Example #include <iostream.h>
#include <unistd.h> // needed for access()

#include <string>

#include "StTpcSimpleGeometry.hh"

int main ()
{

// Check File access

string geoFile("../run/TPCgeo.conf");
if (access(geoFile.c_str(),R_OK)) {

cerr << "ERROR:\n" << geoFile << " cannot be opened" << endl;
cerr << "Exitting..." << endl;
exit(1);

}

// Instantiate the DataBase

StTpcGeometry *geomDb =
StTpcSimpleGeometry::instance(geoFile.c_str());

// print out the data base parameters

geomDb->print();

return 0;
}

Programs Output:
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To be run
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13.7 StTpcSimpleSlowControl

Summary Implementation of a simple data base which provides slow control or monitored
parameters.

Synopsis #include "StTpcSimpleSlowControl.hh"
As with the other data base implementations the SystemOfUnits from the SCL
is also used to ensure consistent set of units is utilized. .

Description Class StTpcSimpleSlowControl is a concrete class which implements meth-
ods for the access functions defined in the abstract base class StTpcSlowControl.
The implementation of the ”simple” data base uses the StGetConfigValue util-
ity from the SCL which parses an ASCII file and reads the numerical value of the
parameters which are specified by a key word. The parameters are kept as data
members, and the access functions simply return these values. This initialization is
done in the private constructors.

Persistence None

Related Classes The base class which defines the interface is specified in the class StTpcSlowCon-
trol. See section 13.8.

Public
Constructors

The data base is implemented as a singleton class which protects the code against
multiple distinct copies of the data base parameters in the code. As such the class
constructors are implemented as private data members which are called via a public
member function:

static StTpcSlowControl* instance(const char* file)
Returns a pointer of type StTpcSlowControl. The static designation implies at
most, one instance of this can occur. The pointer will be returned if and only if a
file name (file) suitable to initialize the class is specified. Such a file is provided in
TRS in the run directory (run/sc.conf). Subsequent declarations of magnetic fields
can be made in the code, but once the first instance is created, the same pointer will
be returned.

static StTpcSlowControl* instance()
Returns the pointer of type StTpcSlowControl should an instance of the class have
been made previously, otherwise a filename must be specified for the first initial-
ization.

Private
Constructors

The constructors are hidden from direct call to ensure that only one instance of
the data base is made. As such, the constructors are only called through member
functions as described above. The constructors which can be called are:

StTpcSimpleSlowControl(const char* file)
Called from the member function instance(const char* file) which is
only invoked if a previous instance is not detected. The parsing of the ASCII file is
done in this constructor to initialize the data members.
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StTpcSlowControl()
Never called; rather the member function instance() returns the StSlowCon-
trol pointer which was created by the previous instance. No initialization of data
members is done.

Public
Operators

None

Public
Member Functions

Following are implementations of the functions defined in the interface StTpcSlowControl.

Environment
double hallTemperature() const
Returns the environmental temperature within the experimental hall.

double hallPressure() const
Returns the environmental pressure within the experimental hall.

Voltages
double driftVoltage() const
Returns the voltage applied to the membrane which produces the drift field voltage.

double innerSectorAnodeVoltage() const
Returns the voltage applied to the anode wires in the inner part of a super sector.

double innerSectorGatingGridVoltage() const
Returns the voltage applied to the gating grid wires in the inner part of a super
sector.

double outerSectorAnodeVoltage() const
Returns the voltage applied to the anode wires in the outer part of a super sector.

double outerSectorGatingGridVoltage() const
Returns the voltage applied to the gating grid wires in the outer part of a super
sector.

Diagnostic
void print(ostream& os = cout) const

Diagnostic feature which prints all the parameters accessible via public member
functions to an output file stream. Default is the screen.

Example #include <iostream.h>
#include <unistd.h> // needed for access()

#include <string>

#include "StTpcSimpleSlowControl.hh"

int main ()
{

// Check File access

string scFile("../run/sc.conf");
if (access(scFile.c_str(),R_OK)) {

cerr << "ERROR:\n" << scFile << " cannot be opened" << endl;
cerr << "Exitting..." << endl;
exit(1);

}
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// Instantiate the DataBase

StTpcSlowControl *scDb =
StTpcSimpleSlowControl::instance(scFile.c_str());

// print out the data base parameters

scDb->print();

return 0;
}

Programs Output:

To be run
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13.8 StTpcSlowControl

Summary Interface which defines access functions to conditional parameters that are moni-
tored during a physics run.

Synopsis Purely abstract class, no instantiation is possible.

Description Class StTpcSlowControl is an abstract base class that defines the interface
that is used to access all TPC slow control related parameters. This includes both
detector and environmental parameters.

Persistence None

Related Classes The implementation of the slow control data base is done in the class StTpcSimpleSlowControl.
See section 13.7.

Public
Constructors

None

Public
Virtual Operators

None

Public Virtual
Member Functions

Environment
virtual double hallTemperature() const
Provides access to the environmental temperature within the experimental hall.

virtual double hallPressure() const
Provides access to the environmental pressure within the experimental hall.

Voltages
virtual double driftVoltage() const
Provides access to the voltage applied to the membrane which produces the drift
field voltage.

virtual double
innerSectorAnodeVoltage() const

Provides access to the voltage applied to the anode wires in the inner part of a super
sector.

virtual double
innerSectorGatingGridVoltage() const

Provides access to the voltage applied to the gating grid wires in the inner part of a
super sector.

virtual double
outerSectorAnodeVoltage() const

Provides access to the voltage applied to the anode wires in the outer part of a super
sector.

virtual double
outerSectorGatingGridVoltage() const

Provides access to the voltage applied to the gating grid wires in the outer part of a
super sector.
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Diagnostic
virtual void print(ostream& os = cout) const
Diagnostic feature which prints all the parameters accessible via public member
functions to an output file stream os.
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14 Coordinates and Transformations

Following are descriptions of the three different coordinate systems as well as the functor which relates
them. The transformations between the three systems are all encapsulated in the overloaded “()” operator.
The transformation routines requires the use of the data base implementations described in section 13.

14.1 StGlobalCoordinate

Summary Definition of a global coordinate given by an StThreeVector of double preci-
sion. This defines the global STAR coordinate system which is deduced from the
survey measurements of the detectors.

Synopsis #include "StGlobalCoordinate.hh"
Requires StThreeVector as well as StGlobals from the SCL. These are
included internally.

Description Class StGlobalCoordinate stores a position as a three vector (i.e. (x,y,z)).
This is the coordinate system that the detector subsystem as well as the magnetic
field will be related through. It will be necessary when following track trajectories
between detectors. No units are implied or assumed. These must be specified by
the user.

Persistence None

Related Classes The header file “StTpcCoordinates.hh” contains the include directives for all co-
ordinate systems. The transformation class or functor “StCoordinateTransform” is
also related. See section 14.2.

Public
Constructors

StGlobalCoordinate()
Creates an instance with the coordinate vector initialized to (0,0,0).

StGlobalCoordinate(const double x, const double y,
const double z)

Creates an instance with the coordinate vector initialized to (x,y,z).

StGlobalCoordinate(const StThreeVector<double>& v)
Creates an instance with the coordinates initialized to the values as specified by the
StThreeVector v.

Public
Operators

None

Public
Member Functions

const StThreeVector<double>& pos() const
Inline access function which returns the coordinate in thr form of an StThreeVector.
Single components can only be accessed through member function of the StThree-
Vector.

Non-Member
Operators

ostream& operator<<(ostream& os,
const StGlobalCoordinate& c)
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Allows the printing of an StGlobalCoordinate to an output file stream without ac-
cessing each individual component.

Example
#include "StThreeVector.hh"
#include "StGlobalCoordinate.hh"

int main()
{

StThreeVector<double> v2(1,2,3);

StGlobalCoordinate coordinate1(9,8,7);
StGlobalCoordinate coordinate2(v2);

cout << "Coordinate 1 " << coordinate1 << endl;
cout << "Coordinate 2 " << coordinate2 << endl;

return 0;
}

Programs Output:

To be run
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14.2 StTpcCoordinateTransform

Summary Functor which contains the routines necessary to transform any of the three coor-
dinate systems as specified in this section (section 14).

Synopsis #include "StTpcCoordinateTransform.hh"
The functor utilizes the classes StThreeVector, StMatrix, and StGlobals
from the SCL. . In addition, because the coordinate systems are related via geomet-
rical layout of the detector, the data base classes are also required at instantiation—
both StTpcGeometry and StTpcSlowControl are required. As with all
classes contained within the framework of TRS, the SystemOfUnits from the
SCL is also utilized.

Description Class StGlobalCoordinate stores a position as a three vector (i.e. (x,y,z)).
This is the coordinate system that the detector subsystem as well as the magnetic
field will be related through. It will be necessary when following track trajectories
between detectors. No units are implied or assumed. These must be specified by
the user.

Both the geometrical parameters from the TPC geometry data base and several
parameters (i.e. drift velocity) from the slow control database are required for the
transformations to be physically meaningful. These data bases must be created
outside the class and passed via the constructor.

Persistence None

Related Classes The header file ”StTpcCoordinates.hh” contains the include directives for all coor-
dinate systems.

Public
Constructors

StCoordinateTransform(StTpcGeometry* geoDb,
StTpcSlowControl* scDb)

Instantiates the coordinate transformation functor.

Public
Operators

The only operations publicly accessible are the “()” operators which have been
overloaded to facilitate the transformation between the different coordinate sys-
tems. This allows the same form and usage syntax independent of the coordinate
systems under transformation and relieves the user from calling the actual conver-
sion routines in the correct order. The operator takes two arguments, the coordinate
system one has available as the first, and the desired coordinate system as the sec-
ond. Six such overloads are currently available, two of which are trivial calls of the
other four:

RAW TPC Coordinate � TPC Local Coordinates
void operator()

(const StTpcPadCoordinate& raw,
StTpcLocalCoordinate& loc)

Transforms an StTpcPadCoordinate (see 14.4) to an StTpcLocalCoordinate
(see 14.3). Transformation involves several intermediate steps which are contained
in private member functions. The y axis is orthogonal to the pad row direction. The
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row number then directly maps from the y coordinate and the pad number directly
maps from the x coordinate. The z coordinate is obtained from the drift velocity.
The coordinate is then rotated through the appropriate angle to coincide with the
sector in question.

void operator()
(const StTpcLocalCoordinate& loc,

StTpcPadCoordinate& raw)
Transforms an StTpcLocalCoordinate (see 14.3) to an StTpcPadCoordinate
(see 14.4). The inverse of the previous transformation, the coordinate if rotated such
that the new y axis is orthogonal to the pad row direction. The y coordinate directly
maps to a pad row and the x axis to a specific pad. The time bin is related to the
z position via the drift velocity. As above these calculations are buried in private
member functions.

TPC Local Coordinate � STAR Global Coordinates
void operator()

(const StTpcLocalCoordinate& loc,
StGlobalCoordinate& glo)

Transforms an StTpcLocalCoordinate (see 14.3) to an StGlobalCoordinate
(see 14.1). The coordinates are shifted by the appropriate amounts specified by the
detector survey and alignment calibration procedure. Currently, in the absence of
these numbers, the local and global coordinate systems coincide.

void operator()
(const StGlobalCoordinate& glo,

StTpcLocalCoordinate& loc)
Transforms an StGlobalCoordinate (see 14.1) to an StTpcLocalCoordinate
(see 14.3). The coordinates are shifted by the appropriate amounts specified by the
detector survey and alignment calibration procedure. As mentioned above, cur-
rently, in the absence of these numbers, the local and global coordinate systems
coincide.

RAW TPC Coordinate � STAR Global Coordinates
void operator()

(const StTpcPadCoordinate& raw,
StGlobalCoordinate& glo)

Transforms an StTpcPadCoordinate (see 14.4) to an StGlobalCoordinate
(see 14.1). This is facilitated through two subsequent calls of the above operators:
raw � local; local � global.

void operator()
(StGlobalCoordinate& glo,

const StTpcPadCoordinate& raw)
Transforms an StGlobalCoordinate (see 14.1) to an StTpcPadCoordinate
(see 14.4). This is facilitated through two subsequent calls of the above operators:
global � local; local � raw.

Public
Member Functions

None
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Non-Member
Operators

None

Example
#include <iostream.h>
#include <unistd.h>
#include <string>

#include "StTpcSimpleGeometry.hh"
#include "StTpcSimpleSlowControl.hh"

#include "StCoordinates.hh"
#include "StTpcCoordinateTransform.hh"

int main()
{

// Make instance of Data Bases
// Check File access

string geoFile("../run/TPCgeo.conf");
if (access(geoFile.c_str(),R_OK)) {

cerr << "ERROR:\n" << geoFile << " cannot be opened" << endl;
cerr << "Exitting..." << endl;
exit(1);

}

string scFile("../run/sc.conf");
if (access(scFile.c_str(),R_OK)) {

cerr << "ERROR:\n" << scFile << " cannot be opened" << endl;
cerr << "Exitting..." << endl;
exit(1);

}

// Instantiate the DataBases

StTpcGeometry *geomDb =
StTpcSimpleGeometry::instance(geoFile.c_str());

StTpcSlowControl *scDb =
StTpcSimpleSlowControl::instance(scFile.c_str());

// Pad coordinate (sector, pad row, pad, timebin)
StTpcPadCoordinate raw(12.,4.,4.,312.);
StTpcLocalCoordinate local;
StGlobalCoordinate global;

StTpcCoordinateTransform transformer(geomDb, scDb);

transformer(raw,local);
cout << "raw: " << raw << " --> local " << local << endl;

transformer(local, global);
cout << "local: " << local << " --> global " << global << endl;

transformer(global, raw);
cout << "global: " << global << " --> raw " << raw << endl;

return 0;
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}

Programs Output:

To be run
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14.3 StTpcLocalCoordinate

Summary Definition of a local coordinate given by an StThreeVector of double precision.
Defined with respect to the origin at the center of the TPC.

Synopsis #include "StGlobalCoordinate.hh"
Requires StThreeVector as well as StGlobals from the SCL. These are
included internally. All the coordinates are included in the header file ”StCoordi-
nates.hh”.

Description Class StTpcLocalCoordinate stores a position as a three vector (i.e. (x,y,z)).
This is the coordinate system that is defined with respect to an origin that is located
at the geometrical center of the TPC. No units are implied or assumed. These must
be specified by the user.

Persistence None

Related Classes The header file ”StTpcCoordinates.hh” contains the include directives for all
coordinate systems. The transformation class or functor ”StCoordinateTransform”
is also related. See section 14.2.

Public
Constructors

StTpcLocalCoordinate()
Creates an instance with the coordinates initialized to (0,0,0).

StTpcLocalCoordinate(const double x,
const double y, const double z)

Creates an instance with the coordinates initialized to (x,y,z).

StGlobalCoordinate(const StThreeVector<double>& v)
Creates an instance with the coordinates initialized to the values as specified by the
StThreeVector, v.

Public
Operators

None

Public
Member Functions

const StThreeVector<double>& pos() const
Inline access function which returns the coordinate in thr form of an StThreeVector.
Single components can only be accessed through member function of the StThree-
Vector.

Non-Member
Operators

ostream& operator<<(ostream& os,
const StTpcLocalCoordinate& c)

Allows the printing of an StTpcLocalCoordinate to an output file stream without
accessing each individual component.

Example #include "StThreeVector.hh"
#include "StTpcLocalCoordinate.hh"

int main()
{

StThreeVector<double> v2(1,2,3);

StTpcLocalCoordinate coordinate1(9,8,7);
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StTpcLocalCoordinate coordinate2(v2);

cout << "Coordinate 1 " << coordinate1 << endl;
cout << "Coordinate 2 " << coordinate2 << endl;

return 0;
}

Programs Output:

To be run
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14.4 StTpcPadCoordinate

Summary Definition of a raw TPC coordinate indexed by a sector number, pad row number,
pad number and time bin. All are given as integers.

Synopsis #include "StTpcPadCoordinate.hh"
Requires StGlobals from the SCL. It is included internally.

Description Class StTpcPadCoordinate stores a raw position indexed by the elements
of the detector. The coordinate is uniquely specified by four (integer) numbers
(integers)— a sector number (1–24), a pad row (1–45), a pad number (1–192), and
a time bin (1–512). For compactness, a more efficient choice can be made for the
data types.

Persistence None

Related Classes The header file ”StTpcCoordinates.hh” contains the include directives for all co-
ordinate systems. The transformation class or functor ”StCoordinateTransform” is
also related. See section 14.2.

Public
Constructors

StTpcPadCoordinate()
Creates an instance with the coordinates initialized to (0,0,0,0).

StTpcPadCoordinate(const int s,
const int r, const int p, const int tb)

Creates an instance with the coordinates initialized to (s,r,p,tb) where s, r, p, and tb
denote sector, pad row, pad, and time bin respectively.

Public
Operators

None

Public
Member Functions

const int sector() const
Inline access function which returns the sector number.

const int row() const
Inline access function which returns the pad row number.

const int pad() const
Inline access function which returns the pad number.

const int timeBucket() const
Inline access function which returns the time bucket.

void setSector(int s)
Function which assigns the sector to be s.

void setRow(int r)
Function which assigns the row to be r.

void setPad(int p)
Function which assigns the pad to be p.

void setTimeBucket(int tb)
Function which assigns the time bucket to be tb.
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Non-Member
Operators

ostream& operator<<(ostream& os,
const StTpcPadCoordinate& c)

Allows the printing of an StTpcPadCoordinate to an output file stream with-
out accessing each individual component.

Example
#include "StTpcPadCoordinate.hh"

int main()
{

StTpcPadCoordinate coordinate1(9,8,7,312);

int sector = coordinate.sector();
cout << "sector = " << sector << endl;

coordinate.setPad(4);
cout << "pad = " << pad << endl;

cout << "Coordinate 1 " << coordinate1 << endl;

return 0;
}

Programs Output:

To be run
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15 Physics Processes

Following are descriptions of the four groups of processes that are modeled in TRS at present. These
include the classes responsible for the ionization calculations (StTrsDeDx – see section 15.3), charge
transport of the ionization through the field cage to the read out plane (StTrsChargeTransporter
– see sections 15.2, 15.6, and 15.9), analog signal generation (see sections 15.1, 15.5, and 15.8), and the
digital signal generation (see sections 15.4, 15.7, and ??). The process of charge collection is best done in
a container and is described in section 16.

15.1 StTrsAnalogSignalGenerator

Summary Abstract class which defines an interface for the functions necessary to induce
charge onto the TPC pad place given a quantity of charge on an anode wire above
it. Furthermore, after the charge is induced on the pad plane, the analog sampling
of the charge must be calculated and distributed into time bins.

Synopsis Abstract class, no instantiation is possible.

Dependencies Requires the geometry (section 13.4), slow control (section 13.8), and electronics
(section 13.3) data base classes as well as the wire plane (section 16.6) , and the
sector where the charge will distributed (section 16.5).

Description Class StTrsAnalogSignalGenerator is an abstract class which defines the
necessary functions to facilitate the modeling of the physics processes that occur
after charge collection occurs on the anode wires. This entails the charge induction
on the pad plane which is then read out by an analog pre-amplifier and stored in
discrete time bins by a switched capacitor array (SCA) . The base class keeps track
of the data base information as well as the range of pads and rows that have a signal
induced per single charge cluster on the anode wires. It is possible to set a threshold
which reduces the number of signals stored as well as specifying to suppress time
bins with no signal present.

Simple initialization and process flags are set via public member functions to enable
or disable specific processes. It should be assumed that all processes are by default
turned off unless set otherwise by the user. No statistical processes occur within this
realm so no random number generators are needed nor accessible. This may change
with the addition of random noise generation which is currently not implemented.

It should be noted that the derived analog signal generators are implemented as
singleton classes so that there is no confusion to which signal generator is being
used.

Persistence None

Related Classes Concrete classes are StTrsFastAnalogSignalGenerator (see section 15.5)
and StTrsSlowAnalogSignalGenerator (see section 15.8).
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Public
Constructors

StTrsAnalogSignalGenerator(
StTpcGeometry* geo, StTpcSlowControl* sc,
StTpcElectronics* elec, StTrsSector& sec)

Called from derived classes which sets flags for calculations and stores data base
class pointers—the geometry db (geo), slow control db (sc), the electronics db
(elec), and magnetic field db (mag). The class cannot be instantiated alone as it
contains virtual member functions which must be implemented in a derived class.

Public
Operators

None

Public
Member Functions

Charge Induction
virtual void

inducedChargeOnPad(StTrsWireHistogram& wires)
Provides an interface for determining the amount of charge that is induced on a
single pad given a quantity of charge collected on the anode wire plane. Given an
StTrsWireBinEntry which specifies an amount of charge collected on a wire
at a specific position, the charge can be generated (using a specific functional form)
on a single pad.

Charge Sampling
virtual void sampleAnalogSignal()
Provides interface for sampling an analog signal given the centroid and maximum
amplitude of the signal on a pad.

virtual double signalSampler(double t,
StTrsAnalogSignal& sig)

Provides interface for distributing charge across multiple time bins given the time
bin (t) and the centroid and amplitude of the signal (sig). Provides the amount of
integrated charge within the time bin specified by t.

Switches
void setDeltaPad(int dp)
Sets the total number of pads (dp) in a given row which will have the amount of
charge induced on them from a single charge deposition at the wire plane. Default
is 0; that is, the charge is only induced on the pad directly below the charge.

void setDeltaRow(int dr)
Sets the total number of rows (dr) in a given row which will have the amount of
charge induced on them from a single charge deposition at the wire plane. No cross
coupling between the inner and outer part of the super sector is currently allowed.
Default is 0; that is, the charge is only induced on the pad directly below the charge.

void setSignalThreshold(int thr)
Sets the threshold (in fC) of the signal size which must be exceeded in order for the
results to be stored.

void setSuppressEmptyTimeBins(bool v)
Sets flag to write out only time bins that are above the signal threshold.

Non-Member
Operators

None

Example see section 15.8 and 15.5.
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15.2 StTrsChargeTransporter

Summary Abstract class which provides an interface for the functions necessary to transport
an StTrsMiniChargeSegment (see section 16.4).

Synopsis Abstract class, no instantiation is possible.

Dependencies Requires the geometry (section 13.4), slow control (section 13.8), and magnetic
field (section 13.1) data base classes as well as the ionization information of the
gases (section 15.3). Internally requires the random number generators which are
contained in the SCL.

Description Class StTrsChargeTransporter is an abstract class which defines the neces-
sary functions to facilitate charge transport through a gas volume with the possible
presence of electro-magnetic fields. Simple initialization and process flags are set
via public member functions to enable or disable specific processes. It should be
assumed that all processes are by default turned off unless set otherwise by the user.
Statistical processes are generally handled by the use of random number generators
which are contained in the Star Class Library . These are contained in the base class
as static data members in order to ensure time is not wasted in the instantiation of
random seeds.

It should be noted that the derived charge transporters are implemented as singleton
classes so that there is no confusion to which transporter is being used.

Persistence None

Related Classes Concrete classes are StTrsFastChargeTransporter (see section 15.6) and
StTrsSlowChargeTransporter (see section 15.9).

Public
Constructors

StTrsChargeTransporter(
StTpcGeometry* geo, StTpcSlowControl* sc,
StTrsDeDx* dedx, StMagneticField* mag)

Called from derived classes which sets flags for calculations and stores data base
class pointers—the geometry db (geo), slow control db (sc), the ionization/gas in-
formation (dedx), and magnetic field db (mag). The class cannot be instantiated
alone as it contains virtual member functions which must be implemented in a de-
rived class.

Public
Operators

None

Public
Member Functions

virtual void transportToWire(StTrsMiniChargeSegment& seg)
Provides interface for transporting an StTrsMiniChargeSegment seg to the
z position of the wire plane. The z-position of the mini segment must be changed
to reflect the drift distance and the amount of charge may be altered to reflect any
charge loss.

virtual double chargeAttachment(double l)
Provides interface for charge attachment value to be calculated. Given a drift length
l, the fraction of charge can be calculated. Users may used any parameter from
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the data bases that are stored within the class. The protected data member mAt-
tachment (double precision) is assigned a value which determines the fraction of
charge loss. A boolean flag which is set by the member function setChargeAttach-
ment(bool v) determines whether the charge attachment calculation is applied.

virtual double wireGridTransmission()
Provides interface for calculation of the fraction of charge lost due to the transport
of ionization through a wire grid (i.e. the gating grid). The member function must
set the protected data member mTransparency (double precision) which specifies
the fraction of charge lost. The charge loss is applied if a boolean flag is set via the
public member function setGatingGridTransparency.

Switches
void setChargeAttachment(bool v)
Sets a flag which determines whether the charge will be attenuated via attachment
processes during transport through the field cage. Default is FALSE.

void setGatingGridTransparency(bool v)
Sets a flag which determines whether the charge will be attenuated due to a finite
wire grid transparency. Default is FALSE.

void setTransverseDiffusion(bool v)
Sets a flag which determines whether the charge will be distributed at the pad plane
according to the diffusion properties of the gas in the transverse direction only.
Default is FALSE.

void setLongitudinalDiffusion(bool v)
Sets a flag which determines whether the charge will be distributed at the pad plane
according to the diffusion properties of the gas in the longitudinal direction only.
Default is FALSE.

void setExB(bool v)
Sets a flag which determines whether the charge will be transported incorporating
the effects of the magnetic field. Default is FALSE.

double transparencyCalculation()
An implementation for a mono-stable switched gating grid using the gating grid ge-
ometry and voltages. A constant value (independent of position in the chamber) is
returned in the private data member mTransparency. The calculation in hidden in
private member functions. It is done only once, regardless of the number of times it
is called, when the public member functionsetGatingGridTransparency(bool
v) is set to TRUE.

Non-Member
Operators

None

Example see section 15.6 and 15.9
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15.3 StTrsDeDx

Summary Contains parameters regarding various gas mixtures of interest for STAR in ad-
dition to the functions required to calculate parameters and quantities related to
ionization production of charged particles through such mixtures.

Synopsis #include "StTrsDeDx.hh"

Description Class StTrsDeDx has two components. It contains constants and parameters re-
lated to (currently) three types of gas mixtures which allow calculations to be done
regarding both transport properties of ionization through the medium, but also the
production of ionization itself. Currently constants for three gas mixtures are in-
cluded:

� NeCO � (90:10).
� P10; ArCH � (90:10).
� Ar.

Parameters needed for transport properties include diffusion coefficients in both
the longitudinal and transverse directions. The magnetic field dependence on these
parameters is also calculable. Attachment coefficients due to electro-negative im-
purities (i.e. O � and H � O) are also stored. (in a soon to be included appendix).

Ionization parameters that are stored include the mean average ionization yield
per unit length, ionization potential, average number of pairs produced per unit
length etc. This allows the modeling of energy loss through ionization processes
from first principles (i.e. the mean free path) for any gas mixture. Given a specific
length, the total number of interactions, as well as secondary electrons produced
can be calculated completely within the class. The Bethe-Bloch parameterization
which specifies the amount of ionization relative to a minimum ionizing particle is
calculable within the class. Since ionization is a statistical procedure, there are also
three static random number generators which allow the generation of:

� Poissonian Distribution.
� Gaussian Distribution.
� Flat Distribution.

Persistence None

Related Classes None

Dependencies This class requires the random number generators from the SCL are required along
with the SystemOfUnits. These are included internally.

Public
Constructors

StTrsDeDx()
Default constructor is not accessible.
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StTrsDeDx(const string& gas, double l=1.95*centimeter,)
Creates an instance with the gas constants selected by the string gas. Either ”Ar”,
”Ne”, or ”P10” (”p10”) can be specified. A sample (i.e. pad) length is specified by
the second parameter l. The type of gas must be specified while the sample length
has a default value of 19.5 mm. NOTE: Units are taken to be mm by default!

Enumerated
Types

StElectron(primaries, secondaries, total,
numberOfElectrons)

Public
Operators

None

Public
Member Functions

double W() const
Inline access functions which returns the average energy deposition to produce a
single electron-ion pair.

double padLength() const
Inline access function which returns the current sample length.

void setPadLength(double len)
Allows one to set the sample length to any arbitrary length. Use SystemOfUnits
to remove ambiguity in sample length.

double transverseDiffusionCoefficient() const
Inline access function returns the transverse diffusion constant. No magnetic field
is currently assumed.

double longitudinalDiffusionCoefficient() const
Inline access function returns the longitudinal diffusion constant.

double attachmentCoefficient() const
Inline access function which returns the oxygen attachment coefficient.

double nextInteraction()
Returns the relative position of the next interaction from a statistical distribution of
the mean free path of a charged particle in the gas specified in the constructor.

int primary(double bg = 3)
Returns the number of primary electrons produced in a sample length as specified in
the constructor due to ionization interactions by a particle with a relativistic value of���

. By default it is taken as 3 which is a minimum ionizing particle. The number
of ionizations is calculated from a Poissonian distribution with a mean which is
calculated from a parameter which specifies the mean number of ionizations per
unit length in the specific gas.

int secondary(double* E)
Returns the number of secondary electrons generated in a sample length as speci-
fied in the constructor from ionization processes subsequent to the initial primaries.
The energy of the primary is calculated (from a statistical distribution), and given
the ionization potential of the gas, the number of subsequent electrons can be cal-
culated. A slight medium dependence to the expectation of the Rutherford (E

� �
) is

introduced. The energy of the primary electron is returned as a pointer value (E).
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double betheBloch(double bg) const
The fraction of ionization relative to minimum ionizing is returned given the rel-
ativistic velocity (

���
) of the particle. The parameterization used is taken from

Walenta et al.22

void electrons(vector<int>&, double bg = 3)
Returns the total number of electrons produced in a sample length specified in the
constructor in a vector with three components. The first entry stores the number
of primaries, the second stores the number of secondaries, and the third stores the
total number generated.

void print(ostream& os = cout)
Diagnostic feature which allows one to print the contents of the parameters stored
for the gas of interest within the class to a file stream. The default file stream is the
screen.

Non-Member
Operators

None

Example #include <fstream.h>
#include <unistd.h>
#include <vector>
#include <string>

#include "StGlobals.hh"
#include "SystemOfUnits.h"
#include "StThreeVector.hh"

#ifndef ST_NO_NAMESPACES
using namespace units;
#endif

#include "StTrsDeDx.hh"

int main()
{

int numberOfTracks = 1000;
int numberOfSamples = 45; // number of pads
float subSegments = 1.; // break sample into

double padLength = 1.15*centimeter;
cout << "subSegments= " << subSegments << endl;

string gas("Ar");
StTrsDeDx myELoss(gas,padLength);
StTrsDeDx subELoss(gas,(padLength/subSegments));

myELoss.print();

int ii,jj,kk;
#ifndef ST_NO_TEMPLATE_DEF_ARGS

vector<int> sum;
#else

vector<int, allocator<int> > sum;
#endif

22A. H. Walenta et al., NIM 161 (1979) 45.
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double bg = .1;

for(jj=1; jj<=5; jj++) {
double increment = bg;
for(kk=1; kk<10; kk++) {

bg+=increment;

cout << "bg " << bg
<< \"Relative Energy Loss \" << (myELoss.betheBloch(bg)) << endl;

}
bg+=increment;

}

//Create tracks:
for(int itrack=0; itrack<numberOfTracks; itrack++) {

for (int isample=0; isample<numberOfSamples; isample++) {

sum.resize((StTrsDeDx::numberOfElectrons),0);
myELoss.electrons(sum);

cout << "Track " << static_cast<float>(itrack) << endl;
cout << " primaries " << (sum[StTrsDeDx::primaries]) << endl;
cout << " secondaries " << (sum[StTrsDeDx::secondaries]) << endl;
cout << " total " << (sum[StTrsDeDx::total]) << endl;

int totalInSubsegment = 0;
for(int isubsample=0; isubsample<subSegments; isubsample++) {

sum.resize((StTrsDeDx::numberOfElectrons),0);
subELoss.electrons(sum);
totalInSubsegment += sum[StTrsDeDx::total];

cout << " sub: " << (totalInSubsegment);
}

} // isample
} // itrack

return 0;
}
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15.4 StTrsDigitalSignalGenerator

Summary Abstract class which provides an interface for the functions necessary to simulate
the digitization process in the TPC front-end electronics.

Synopsis Abstract class, no instantiation is possible.

Dependencies Requires the electronics (section 13.3) data base class StTpcElectronics as
well as the sector information where the analog information is stored StTrsSector
(section 16.5) and the output data structureStTrsDigitalSector (section 16.3).

Description Class StTrsDigitalSignalGenerator is an abstract class which defines
the necessary functions to facilitate the modeling of the processes that occur in
the digitization of the analog signals which occupy the time buckets in a sector.
This is currently implemented as a simple proportionality constant. In the near
future, pending an appropriate function, the non-linear characteristics of the STAR
ADC will be implemented. Digital noise is also not currently implemented. The
base class keeps track of the data base information. No flags currently exist to
toggle the active processes, however they should be added upon implementation
of various noise generators. No statistical processes occur within this realm so no
random number generators are needed nor accessible. This may change with the
addition of random noise generation. It should be noted that the derived digital
signal generators are implemented as singleton classes so that there is no confusion
to which signal generator is being used.

Persistence None

Related Classes Concrete classes are StTrsFastDigitalSignalGenerator (see section 15.7)
and StTrsSlowDigitalSignalGenerator (see section ??).

Public
Constructors

StTrsDigitalSignalGenerator(StTpcElectronics* elec,
StTrsSector& sec,StTrsDigitalSector& digSec)

Called from derived classes which stores the electronics data base class pointers.
The class cannot be instantiated alone as it contains virtual member functions which
must be implemented in a derived class.

Public
Operators

None

Public
Member Functions

virtual void digitizeSignal() const
Provides interface for digitizing the signals stored in the StTrsSector which is
stored as a protected data member, by reference.

virtual void addWhiteNoise() const
Provides interface for producing random white noise into the data at the digital
level.

virtual void addCorrelatedNoise() const
Provides interface for producing correlated noise into the data at the digital level.

Non-Member
Operators

None

Example see section 15.7 and ??.
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15.5 StTrsFastAnalogSignalGenerator

(Not currently implemented)

Summary Implements the virtual functions in the class StTrsAnalogSignalGenerator
(section 15.1). NOTE: This class is not currently implemented!!!

Synopsis #include "StTrsFastAnalogSignalGenerator.hh"
Requires StTpcGeometry (section 13.4 StTpcSlowControl (section 13.8),
StTrsDeDx (section 15.3) StMagneticField (section 13.1 .

Description Class StTrsFastAnalogSignalGenerator is meant to implement the three
virtual functions specified in the class StTrsAnalogSignalGenerator (sec-
tion 15.1 with fast (parameterized) algorithms which reproduce the statistical mean
behavior of the processes in question. The emphasis should be on speed and effi-
ciency as it is foreseen that many full events will be modeled with these algorithms.
Currently it is not implemented as the Slow version of the implementation is be-
ing developed. The implementation will be made as a singleton so that multiple
transporters cannot exist within the same program.

Persistence None

Related Classes The header file ”StTrsAnalogSignalGenerator.hh”contains the base class and ”StTrsS-
lowAnalogSignalGenerator.hh” contains a detailed microscopic version of the im-
plementation.

Dependencies As mentioned above, this class requiresStTpcGeometry (section 13.4StTpcSlowControl
(section 13.8), StTpcElectronics (section 13.3 . The output is written to an
StTrsSector .

Public
Constructors

StTrsAnalogSignalGenerator* instance(
StTpcGeometry* geo, StTpcSlowControl* sc,
StTpcElectronics* elec, StTrsSector& sec)

Checks whether or not a previous instance of the class exists and either returns a
pointer to that instance or calls the private constructor and returns a pointer to it.

StTrsAnalogSignalGenerator* instance()
Checks whether or not a previous instance of the class exists and either returns a
pointer to that instance or returns an error message.

Protected
Constructors

StTrsFastAnalogSignalGenerator()
No default constructor is accessible.

StTrsFastAnalogSignalGenerator(
StTpcGeometry* geo, StTpcSlowControl* sc,
StTpcElectronics* elec, StTrsSector& sec)

Will create an instance of the fast analog signal generator. Initialization and book-
keeping variables are done in the base class (section 15.1).

Public
Operators

None
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Public
Member Functions

void inducedSignalOnPad(StTrsWireHistogram& plane)

void sampleAnalogSignal()

void signalSampler()

Non-Member
Operators

None

Example None yet.
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15.6 StTrsFastChargeTransporter

Summary Implements the virtual functions in the class StTrsChargeTransporter (sec-
tion 15.2).

Synopsis #include "StTrsFastChargeTransporter.hh"
Requires StTpcGeometry (section 13.4 StTpcSlowControl (section 13.8),
StTrsDeDx (section 15.3) StMagneticField (section 13.1 .

Description Class StTrsFastChargeTransporter is meant to implement the three vir-
tual functions specified in the class StTrsChargeTransporter (section 15.2
with fast (parameterized) algorithms which reproduced that statistical mean or af
the process parameters. Currently the member function transportToWire()
simple projects the mini charge segment onto the pad plane. A parameterization of
the field cage distortions and effects of the magnetic field are required to go beyond
this. The charge attachment is done as a statistical mean rather than at the single
charge level, and no positional dependence is allowed. All flags which determine
the processes which will be modeled are contained in the base class. The imple-
mentation is a singleton so that multiple transporters cannot exist within the same
program.

Persistence None

Related Classes The header file ”StTrsChargeTransporter.hh” contains the base class and ”StTrsS-
lowChargeTransporter.hh” (not yet implemented) contain are more microscopic ap-
proach to the implementation.

Dependencies As mentioned above, this class requiresStTpcGeometry (section 13.4StTpcSlowControl
(section 13.8), StTrsDeDx (section 15.3) StMagneticField (section 13.1 .
An StTrsMiniChargeSegment is the object that is transported. StGlobals
and StThreeVector from the SCL are also required. These are included inter-
nally.

Public
Constructors

StTrsChargeTransporter* instance(
StTpcGeometry* geo, StTpcSlowControl* sc,
StTrsDeDx* dedx, StMagneticField* mag)

Checks whether or not a previous instance of the class exists and either returns a
pointer that instance or calls the private constructor and returns a pointer to it.

Protected
Constructors

StTrsChargeTransporter()
No default constructor is accessible.

StTrsChargeTransporter(
StTpcGeometry* geo, StTpcSlowControl* sc,
StTrsDeDx* dedx, StMagneticField* mag)

Creates an instance of the fast charge transporter. Initialization and book-keeping
variables are done in the base class (section 15.2).

Public
Operators

None
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Public
Member Functions

void transportToWire(StTrsMiniChargeSegment& seg)
Member function projects the position of a mini charge segment onto the pad
plane. The z-position is modified to reflect the drift distance of the ionization seg-
ment. The quantity of charge is also adjusted depending on whether the appropriate
boolean flags have been set. The charge attenuation must be calculated in the two
other virtual functions.

void chargeAttachment(double l)
Given a drift length, the member function sets a protected data member mAttach-
ment (double precision) to the fractional value of the charge loss expected.

void wireGridTransmission()
Applies the fractional value stored in the protected data member mTransparency
to the charge in the mini segment to allow for the charge loss.

Non-Member
Operators

None

Example Do not run this example! It is meant for illustrative purposes only. For a real
example consult section 18.

// DataBases
#include "StTpcSimpleGeometry.hh"
#include "StTpcSimpleSlowControl.hh"
#include "StTpcSimpleElectronics.hh"
#include "StSimpleMagneticField.hh"
#include "StTrsDeDx.hh"

// processes
#include "StTrsFastChargeTransporter.hh"

int main()
{

//
// after the Data bases have been created

StTrsChargeTransporter *trsTransporter =
StTrsFastChargeTransporter::instance(geomDb, scDb, &myEloss, magDb);

// Set Flags:
trsTransporter->setChargeAttachment(true);
trsTransporter->setGatingGridTransparency(true);
trsTransporter->setTransverseDiffusion(true);
trsTransporter->setLongitudinalDiffusion(true);
trsTransporter->setExB(false);

//
// After mini Segments are generated
//

trsTransporter->transportToWire(aMiniSegment);

// collect the charge, generate the signals...
}
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15.7 StTrsFastDigitalSignalGenerator

Summary Implements the virtual functions in the class StTrsDigitalSignalGenerator
(section 15.4).

Synopsis #include "StTrsFastDigitalSignalGenerator.hh"
Requires StTpcElectronics (section 13.3.

Description Class StTrsFastDigitalSignalGenerator implements the three virtual
functions specified in the class StTrsDigitalSignalGenerator (section 15.4
with fast (parameterized) algorithms which reproduced that statistical behavior of
the digitization. Currently the member function digitizeSignal() calculates
the ADC value given the amount of charge in a given time bucket assuming a con-
stant conversion factor independent of channel number. Several member functions
which generate noise components require development. The implementation is a
singleton so that multiple transporters cannot exist within the same program.

Persistence None

Related Classes The header file ”StTrsDigitalSignalGenerator.hh” contains the base class and ”StTrsS-
lowDigitalSignalGenerator.hh” (not yet implemented) contain are more microscopic
approach to the implementation.

Dependencies As mentioned above, this class requiresStTpcElectronics (section 13.3 charge
collected on the sense wires. The output is written as analog signal (section ??) into
a container class which is an StTrsSector indexed by an StTpcPadCoordinate.
As with all classes, use of SystemOfUnits is made where appropriate.

Public
Constructors

StTrsDigitalSignalGenerator*
instance(StTpcElectronics* elec, StTrsSector& sec)

Checks whether or not a previous instance of the class exists and either returns
a pointer to that instance or calls the private constructor and returns a pointer to
it. Base class contains the data base instances as well as the output container (by
reference).

StTrsDigitalSignalGenerator* instance()
Checks whether or not a previous instance of the class exists and returns a pointer
to that instance or returns an error message.

Protected
Constructors

StTrsFastDigitalSignalGenerator()
No default constructor is accessible.

StTrsFastDigitalSignalGeneratorStTpcElectronics* elec,
StTrsSector& sec)

Creates an instance of the fast digital signal generator. Initialization and book-
keeping variables are kept in the base class (section 15.4).

Public
Operators

None
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Public
Member Functions

void digitizeSignal()
Loops over all time bins contained in the sector and applies a conversion constant
which converts the charge (quantified in mV) to an ADC value.

void addWhiteNoise()
Produces random white noise into the data at the digital level. (Not currently im-
plemented).

virtual void addCorrelatedNoise()
Produces correlated noise into the data at the digital level. (Not currently imple-
mented).

Non-Member
Operators

None

Example Do not run this example! It is meant for illustrative purposes only. For a real
example consult section ??.

// DataBases
#include "StTpcSimpleGeometry.hh"
#include "StTpcSimpleFastControl.hh"
#include "StTpcSimpleElectronics.hh"
#include "StSimpleMagneticField.hh"
#include "StTrsDeDx.hh"

// processes
#include "StTrsFastDigitalSignalGenerator.hh"

int main()
{

// after the Data bases have been created

StTrsDigitalSignalGenerator *trsDigitalSignalGenerator =
StTrsFastDigitalSignalGenerator::instance(electronicsDb, sector);

// create a Sector:
StTrsSector *sector = new StTrsSector(geomDb);

// after charge transport and charge collection
// Generate the ANALOG Signals on pads

trsDigitalSignalGenerator->digitizeSignal();
}
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15.8 StTrsSlowAnalogSignalGenerator

Summary Implements the virtual functions in the class StTrsAnalogSignalGenerator
(section 15.1).

Synopsis #include "StTrsSlowAnalogSignalGenerator.hh"
Requires StTpcGeometry (section 13.4 StTpcSlowControl (section 13.8),
StTrsDeDx (section 15.3) StMagneticField (section 13.1 .

Description Class StTrsSlowAnalogSignalGenerator implements the three virtual func-
tions specified in the class StTrsAnalogSignalGenerator (section 15.1
with fast (parameterized) algorithms which reproduced that statistical mean or af
the process parameters. Currently the member functioninducedChargeOnPad()
calculates the amount of charge induced on a specified pad through a (selectable)
analytic expression as described in section 9 The charge is then sampled in time
after amplification. Charge is distributed into time bins according to a specific
electronics response. Integer flags which determine the extent of the pad and row
cross coupling are set in the base class. The implementation is a singleton so that
multiple transporters cannot exist within the same program.

Persistence None

Related Classes The header file ”StTrsAnalogSignalGenerator.hh”contains the base class and ”StTrsS-
lowAnalogSignalGenerator.hh” (not yet implemented) contain are more microscopic
approach to the implementation.

Dependencies As mentioned above, this class requiresStTpcGeometry (section 13.4StTpcSlowControl
(section 13.8), StTrsDeDx (section 15.3) StMagneticField (section 13.1 .
An StTrsWireHistogram is the object that is required for the input as this
contains all the charge collected on the sense wires. The output is written as analog
signals (section ??) in a container class which is an StTrsSector indexed by an
StTpcPadCoordinate. As with all classes, use of SystemOfUnits is made
where appropriate.

Public
Constructors

StTrsAnalogSignalGenerator* instance(
StTpcGeometry* geo, StTpcSlowControl* sc,
StTpcElectronics* elec, StTrsSector& sec)

Checks whether or not a previous instance of the class exists and either returns
a pointer to that instance or calls the private constructor and returns a pointer to
it. Base class contains the data base instances as well as the output container (by
reference).

StTrsAnalogSignalGenerator* instance()
Checks whether or not a previous instance of the class exists and returns a pointer
to that instance or returns an error message.

Protected
Constructors

StTrsSlowAnalogSignalGenerator()
No default constructor is accessible.
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StTrsSlowAnalogSignalGenerator(
StTpcGeometry* geo, StTpcSlowControl* sc,
StTpcElectronics* elec, StTrsSector& sec)

Creates an instance of the slow analog signal generator. Initialization and book-
keeping variables are kept in the base class (section 15.1).

Public
Operators

None

Enumerated
Data Types

StDistribution
Used to specify the functional form of the charge distribution. Values include:
endo, gatti, dipole, unknown.

StSignal
Used to specify the functional form of the electronics response. Values include:
delta, symmetricGaussianApproximation, symmetricGaussianExact, symmet-
ricGaussianExact, realShaper undefined.

Public
Member Functions

void inducedChargeOnPad(StTrsWireHistogram& hist)
Creates an analog signal which denotes the amplitude and centroid (in time) of a
pulse generated by an StTrsWireBinEntry. Filled into the private data member
mSector. The functional forms of the charge distributions are specified by private
member functions that are called internally.

double signalOnPad(double xo, double yo, double xl,
double xu, double yl, double yu)

Calculates the charge with coordinates specified in a Cartesian system from xl � xu
in the x-direction and yl � yu in the y-direction. Note that the value returned must
be scaled by the appropriate amplitude of the charge cluster. The actual functional
forms are specified by private member functions which are called internally.

void sampleAnalogSignal()
Given the centroid and amplitude of all signals on a pad, the signal from the analog
electronics is deduced and distributed into time bins. Currently there is provisions
to add purely random noise, however it is foreseen to implement algorithms which
produced series and parallel noise for more accurate simulations. The results are
written into the container StTrsSector.

double signalSampler(double tb, StTrsAnalogSignal& sig)
Selects the functional form of the analog electronics response. These functions
must be implemented as private data members and return an amplitude (double
precision) given the centroid and total charge.

void setChargeDistribution(StDistribution dist)
User Selection of the functional form of the charge distribution. Must be specified
by an StDistribution which is an enumerated data type.

void setElectronicSampler(StSignal dist)
User Selection of the functional form of the signal sampler. Must be specified by
an StSignal which is an enumerated data type.

Non-Member
Operators

None
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Example Do not run this example! It is meant for illustrative purposes only. For a real
example consult section 18.

// DataBases
#include "StTpcSimpleGeometry.hh"
#include "StTpcSimpleSlowControl.hh"
#include "StTpcSimpleElectronics.hh"
#include "StSimpleMagneticField.hh"
#include "StTrsDeDx.hh"

// processes
#include "StTrsSlowAnalogSignalGenerator.hh"

int main()
{

// after the Data bases have been created

StTrsAnalogSignalGenerator *trsAnalogSignalGenerator =
StTrsSlowAnalogSignalGenerator::instance(geomDb,

scDb, electronicsDb, sector);
// set the flags

trsAnalogSignalGenerator->setDeltaRow(0);
trsAnalogSignalGenerator->setDeltaPad(0);
trsAnalogSignalGenerator->setSignalThreshold(.0001);
trsAnalogSignalGenerator->setSuppressEmptyTimeBins(true);

// create a Sector:
StTrsSector *sector = new StTrsSector(geomDb);

// after charge transport and charge collection
// Generate the ANALOG Signals on pads

trsAnalogSignalGenerator->inducedChargeOnPad(theWirePlane);
}
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15.9 StTrsSlowChargeTransporter

Summary Implements the virtual functions in the class StTrsChargeTransporter (sec-
tion 15.2). NOTE: This class is not currently implemented!!!

Synopsis #include ‘‘StTrsSlowChargeTransporter.hh’’
Requires StTpcGeometry (section 13.4 StTpcSlowControl (section 13.8), StTrs-
DeDx (section 15.3) StMagneticField (section 13.1 .

Description Class StTrsSlowChargeTransporter is meant to implement the three vir-
tual functions specified in the class StTrsChargeTransporter (section 15.2
with detailed microscopic algorithms which model the processes as close as possi-
ble. Little regard is made for time or efficiency. It is not foreseen that more than
a few tracks will be modeled with these algorithms, but it is meant to study and
tune parameterizations that can be used in the fast charge transporter. Currently the
member function transportToWire() simply projects the mini charge seg-
ment onto the pad plane. It is foreseen that the drift velocity of the ionization at and
position within the field cage will be done via the Langevin equation, and propa-
gated using a Runge-Kutta solution to the equation. The charge attachment should
be done at the single electron level given a probability for absorption. The imple-
mentation should be made as a singleton so that multiple transporters cannot exist
within the same program.

Persistence None

Related Classes The header file ”StTrsChargeTransporter.hh” contains the base class and ”StTrs-
FastChargeTransporter.hh” contains a parameterized version of the implementa-
tion.

Dependencies As mentioned above, this class requiresStTpcGeometry (section 13.4StTpcSlowControl
(section 13.8), StTrsDeDx (section 15.3) StMagneticField (section 13.1 .
An StTrsMiniChargeSegment is the object that is transported. StGlobals
and StThreeVector from the SCL are also required. These are included inter-
nally.

Public
Constructors

StTrsChargeTransporter* instance(
StTpcGeometry* geo, StTpcSlowControl* sc,
StTrsDeDx* dedx, StMagneticField* mag)

Checks whether or not a previous instance of the class exists and either returns a
pointer that instance or calls the private constructor and returns a pointer to it.

Protected
Constructors

StTrsChargeTransporter()
No default constructor is accessible.

StTrsChargeTransporter(
StTpcGeometry* geo, StTpcSlowControl* sc,
StTrsDeDx* dedx, StMagneticField* mag)

Creates an instance of the fast charge transporter. Initialization and book-keeping
variables are done in the base class (section 15.2).
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Public
Operators

None

Public
Member Functions

void transportToWire(StTrsMiniChargeSegment& seg)

void chargeAttachment(double l)

void wireGridTransmission()

Non-Member
Operators

None

Example None Possible.
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16 Physics Containers

Following are descriptions of the different containers used for the storage of the data generated at the
various stages of the simulation

16.1 StTrsAnalogSignal

Summary Provides storage for an arbitrary signal characterized by an amplitude and a time.

Synopsis #include "StTrsAnalogSignal.hh"

Description Class StTrsAnalogSignal provides a way to wrap both analog and digital sig-
nal for insertion into the sector structure which is the complete raw data of the TPC.
It characterizes a signal by its centroid (in time) and either total integrated charge
or charge at the peak. It is the responsibility of the user to make this distinction.
Access functions for both components are provides as well as set functions which
allow manipulation of each component. No use of the SystemOfUnits class is
implied or expected. In addition a comparison operator () is provided which returns
the smallest of two signals determined by the time value. It is foreseen in the future
to make this a templated class such that optimization can be made based on whether
analog or digital signals are being used.

Persistence None

Related Classes StTrsSector is implemented such that it stores data in the form of StTrsAnalogSignal

Public
Constructors

StTrsAnalogSignal()
Default constructor: time and amplitude components are initialized to zero.

StTrsAnalogSignal(float t, float amp)
Time and amplitude components are initialized to the values of t and amp respec-
tively.

Public
Operators

None

Public
Member Functions

float time() const
Returns the value of the time component.

float amplitude() const
Returns the value of the amplitude component.

float setTime(float t)
Sets the value of the time component to the value specified by t.

float setAmplitude(float amp)
Sets the value of the amplitude component to the value specified by amp.

void scaleAmplitude(float f)
Scales the value of the amplitude component from the current value by a factor f.
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Non-Member
Operators

ostream& operator<<(ostream& os, const StTrsAnalogSignal& sig)
Allows the printing of an StTrsAnalogSignal to an output file stream without ac-
cessing each individual component. Default is the screen.

bool operator()(StTrsAnalogSignal& a, StTrsAnalogSignal& b)
Returns a boolean value based on whether the signal a has a time component less
than the value of b (true).

Example
Programs Output:

To be run
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16.2 StTrsChargeSegment

Summary An object-oriented translation of the g2t tpc hit structure which functions as an
input container for the simulator.

Synopsis #include "StTrsChargeSegment.hh"
Requires StTpcGeometry, StTpcSlowControl, StMagneticField data
base classes. Also requires StTrsDeDx and StTrsMiniSegment. Requires
StThreeVector, StMatrix from the SCL.

Description The input to the simulator is generally taken from an external program which will
dominantly be GEANT. The information required for input is the amount of ion-
ization (dE) deposited over a path length (ds) at a position

��
of a track t. This is

the information necessary to construct a charge segment. The class is also able to
rotate the charge segment to the sector 12 reference system which allows a direct
mapping from the pad-row number to the y coordinate and the pad number to the x
coordinate. Calculations are much simpler in this system. The class is also able to
split the segment into smaller fragments given the parameters of the gas from the
ionization class (see StTrsDeDx in section ??). This allows finer granularity of
the simulation process.

Persistence None

Related Classes A list of StTrsMiniChargeSegment is constructed by calling the member
function split().

Public
Constructors

StTrsChargeSegment()
Constructs a charge segment with all components initialized to zero.

StTrsChargeSegment(StThreeVector<double>& pos,
StThreeVector<double>& mom, g2t_tpc_hit* g2t)

Constructs a charge segment with a momentum, mom at a position, pos. The num-
ber of electrons and path length are also kept in data members and must be speci-
fied...

Public
Operators

None

Public
Member Functions

StThreeVector<double>& position() const
Returns the position of the centroid of the segment.

StThreeVector<double>& momentum() const
Returns the momentum of the track at the centroid of the segment.

double dE() const
Returns the energy deposited in the segment.

double ds() const
Returns the length of the track segment.

void rotate(StTpcGeometry* geoDb, StTpcSlowControl* scDb)
Alters the position of the charge segment relative to the position in the local coor-
dinate system of sector 12.
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void split(StTrsDeDx* dedx, StMagneticField* magDb,
int n, double len, list<StTrsMiniChargeSegment>* segs)

Splits a charge segment into n subsegments of length len and returns each into a
list, segs.

Non-Member
Operators

None

Example
Programs Output:

To be run
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16.3 StTrsDigitalSector

Summary Storage for the pixel data in digital, zero compressed format.

Synopsis #include "StTrsDigitalSector.hh"
Requires StTpcGeometry, and StTpcPadCoordinate.

Description The final output of the simulator is pixel data which is indexed by pad-row, pad
number, and perhaps time-bin. The StTrsDigitalSector is a container which
can store an indeterminate number of signed char indexed by these quantities
which represent 8-bit ADC values. Access is provided by the pad number of a
given row and by a complete pad row. The class also provides methods to add
entries with a single function call.

Persistence None

Related Classes StTrsAnalogSignal is the only type of structure that the sector can store.

Public
Constructors

StTrsDigitalSector()
Default constructor cannot be called!

StTrsDigitalSector(StTpcGeometry* geoDb)
Constructs a sector with the number of pad-rows and pads contained in a STAR
sector. The numbers are read from the geometry database specified by geoDb.

Public
Operators

None

Public
Member Functions

vector<char>& timeBinsOfRowAndPad(int r, int p)
Returns all the ADC values contained on pad p of row r in an STL vector.

typedef vector<vector<char>> tpcPadRow
tpcPadRow& padsOfRow(int r) Returns all the ADC values on the pads in
row r. The signals are accessible by an additional pad number.

typedef vector<tpcDigitalPadRow>> tpcSector
tpcDigitalSector& rows()
Returns the complete digital sector.

int numberOfRows() const
Returns the number of pad-rows contained by the digital sector.

int numberOfPadsInRow(int r) const
Returns the number of pads in row r contained by the digital sector.

void clear()
Clears all ADC values from the sector.

void assignTimeBins(int r, int p, vector<char>& sig)
Assigns a set of time bins sig to the pad p of row r. Indices start from 1!.

void assignTimeBins(StTpcPadCoordinate& c,
vector<char>& sig)

Assigns a set of time bins sig to the pad and row r specified by the raw TPC coor-
dinate c.
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Non-Member
Operators

None

Example
Programs Output:

To be run
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16.4 StTrsMiniChargeSegment

Summary A sub-segment of a charge segment which determines the granularity of the simu-
lation.

Synopsis #include "StTrsMiniChargeSegment.hh"
Requires StThreeVector, StMatrix from the SCL.

Description The mini segment is a fragment of a charge segment (above) after it has been split.
It can contain the complete or a component of the segment. It is distributed onto a
helical trajectory over the path length (dl) as specified in the charge segment. It is
this mini segment on which the charge transporter will operate. As such it stores
the position of the mini segment and the number of electrons contained therein.
Access functions for each component exist as to does a method for adjusting the
components after transport has been completed.

Persistence None

Related Classes An StTrsChargeSegment is fragmented to produce mini segments.

Public
Constructors

StTrsMiniChargeSegment()
Default constructor initializes the position and amount of ionization and path length
over which ionization is distributed to zero.

StTrsMiniChargeSegment(StThreeVector<double>& x, double de, double dl)
Initializes the position of the mini segment to x and amount of ionization de de-
posited over a path length dl to the specified values.

Public
Operators

None

Public
Member Functions

const StThreeVector<double>& position() const
Returns the position of the mini segment.

StThreeVector<double>& position()
Allows assignment of the position of the mini segment.

double dl() const
Returns the value of the path length.

const double charge() const
Returns the value of the amount of charge deposited in the mini segment.

void setCharge(double c)
Allows the value of the charge c to be specified.

Non-Member
Operators

ostream& operator<<(ostream& os, const StTrsMiniChargeSegment& seg)
Allows the printing of an StTrsMiniChargeSegment to an output file stream without
accessing each individual component. Default is the screen.

Example
Programs Output:
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To be run
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16.5 StTrsSector

Summary Storage for the pixel data in both analog and digital format.

Synopsis #include "StTrsSector.hh"
Requires StTpcGeometry,StTrsAnalogSignal, andStTpcPadCoordinate.

Description The final output of the simulator is pixel data which is indexed by pad-row, pad
number, and perhaps time-bin. The StTrsSector is a container which can store
an indeterminate number StTrsAnalogSignals indexed by these quantities.
Access is provided by the pad number of a given row and by a complete pad row.
The class also provides methods to add entries with a single function call.

Persistence None

Related Classes StTrsAnalogSignal is the only type of structure that the sector can store.

Public
Constructors

StTrsSector()
Default constructor cannot be called!

StTrsSector(StTpcGeometry* geoDb)
Constructs a sector with the number of pad-rows and pads contained in a STAR
sector. The numbers are read from the geometry database specified by geoDb.

Public
Operators

None

Public
Member Functions

vector<StTrsAnalogSignal>& timeBinsOfRowAndPad(int r, int p)
Returns all the analog signals contained on pad p of row r in an STL vector.

typedef vector<vector<StTrsAnalogSignal>> tpcPadRow
tpcPadRow& padsOfRow(int r) Returns all the signals on the pads in row
r. The signals are accessible by an additional pad number.

typedef vector<tpcPadRow>> tpcSector
tpcSector& rows()
Returns the complete sector.

int size() const
Returns the number of pad-rows contained by the sector.

int numberOfRows() const
Returns the number of pad-rows contained by the sector. (See also size()).

int numberOfPadsInRow(int r) const
Returns the number of pads in row r contained by the sector.

void clear()
Clears all analog signals from the sector.

void addEntry(int r, int p, StTrsAnalogSignal& sig)
Adds a signal sig, to row r, and pad p. Indices start from 1!

void addEntry(StTpcPadCoordinate& c, StTrsAnalogSignal& sig)
Adds a signal sig, to the row and pad as specified by the raw coordinate c.
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void assignTimeBins(int r, int p, vector<StTrsAnalgoSignal>& sig)
Assigns a set of time bins sig to the pad p of row r. Indices start from 1!.

void assignTimeBins(StTpcPadCoordinate& c,
vector<StTrsAnalgoSignal>& sig)

Assigns a set of time bins sig to the pad and row r specified by the raw TPC coor-
dinate c.

Non-Member
Operators

None

Example
Programs Output:

To be run
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16.6 StTrsWireHistogram

Summary Contains all the charge collected on the anode wires and provides a mechanism to
amplify this charge via gas gain amplification.

Synopsis #include "StTrsWireHistogram.hh"
Requires the data base classes StTpcGeometry and StTpcSlowControl.
Only StTrsWireBinEntrys can be stored in the histogram. Also requires the
StThreeVector and Random classes of the SCL.

Description The wire histogram is a class in which charge can be assigned to single wires in a
controlled manner; that is, charge is assigned through the wire bin entry class. The
functionality of this class goes much beyond simply keeping track of the amount
of ionization collected on a single wire, but also possesses functions necessary
to facilitate gas gain amplification of each cluster. The reason this “process” is
associated with a container is that the structure and layout of the wire grid, which
is necessary in the wire histogram is also necessary to be able to do gas gain. Thus
instead of imposing overhead of redundant class construction, it was incorporated
here. This is one of the advantages of Object-Oriented design. Each charge cloud
can now be used to induce a signal on the pad plane.

Persistence None

Related Classes Only StTrsWireBinEntrys can be stored in the histogram.

Public
Constructors

The wire histogram is implemented as a singleton class which protects the code
against multiple distinct copies of the wire histogram in the code. As such the class
constructors are implemented as private data members which are called via a public
member function:

StTrsWireHistogram()
Cannot be called.

StTrsWireHistogram(StTpcGeometry* geoDb, StTpcSlowControl* scDb)
Called from the member function instance().

Private
Constructors

static StTrsWireHistogram*
instance(StTpcGeometry* geoDb, StTpcSlowControl* scDb)

Returns a pointer of type StTrsWireHistogram. The static designation implies at
most, one instance of this can occur. Subsequent declarations of StTrsWireHis-
tograms can be made in the code, but the same pointer will be returned.

Public
Operators

None

Public
Member Functions

int min() const
Returns the first wire with at least one entry.

int max() const
Returns the last wire with at least one entry.

Charge Collection
void addEntry(StTrsWireBinEntry& bin)
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Adds an StTrsWireBinEntry bin to the histogram according to the position of the
entry.

void clear()
Removes all entries from the histogram.

void setDoTimeDelay(bool v)
Sets a flag to explicitly calculate the time offset for those electrons that do not
project directly on an anode wire. Calculation is done in a private member function.

Wire Operations
double wireCoordinate(int w)
Returns the y coordinate of the wire number w as specified in the sector 12 coordi-
nate frame.

vector<StTrsWireBinEntry>& getWire(int w)
Returns in an STL container, all the entries on a wire specified by the wire number
w.

vector<vector<StTrsWireBinEntry>>& getWireHistogram()
Returns all the entries on all wires.

Gas Gain
void setDoGasGain(bool v)
Sets a flag according the the value v whether gas gain amplification should be done.
Actual gas gain is done in private member function.

void setDoGasGainFluctuations(bool v)
Sets a flag according the the value v whether gas gain amplification should be done
with fluctuations according to the Raether distribution. Actual gas gain is done in
private member function.

double avalanche(int n)
Performs the gas gain amplification according to the status of the flags set on wire
n. Actual gas gain is done in private member function.

Non-Member
Operators

ostream& operator<<(ostream& os, const StGlobalCoordinate& c)
Allows the printing of an StGlobalCoordinate to an output file stream without ac-
cessing each individual component.

Example
#include "StThreeVector.hh"
#include "StGlobalCoordinate.hh"

int main()
{

return 0;
}

Programs Output:

To be run
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16.7 StTrsWireBinEntry

Summary Container such that the charge arriving at the anode wire plane can be conveniently
entered into the StTrsWireHistogram.

Synopsis #include "StTrsWireBinEntry.hh"
Requires StGlobalCoordinates. Also requires StThreeVector from the
SCL.

Description Once the charge reaches the anode wire grid it must be collected on the wires.
As such the charge mini segment, which has a ionization distribution which is in
general, orthogonal to the wire direction, distributes the charge on the pad plane in
a Gaussian-like distribution to model the effects of diffusion. This charge must then
be collected on the wires and so, must be repackaged such that a specific quantity
of ionization can be assigned to a position on the anode wires. Thus the wire bin
entry is made to collect an amount of charge, q in the vicinity of an anode wire at a
position

��
, which can be assigned to a wire.

Persistence None

Related Classes Class StTrsWireHistogramonly stores objects of type StTrsWireBinEntry.

Public
Constructors

StTrsWireBinEntry()
Creates an object with the position and number of electrons initialized to zero.

StTrsWireBinEntry(StThreeVector<double> pos, float ne)
Creates an object with the position pos and number of electrons ne.

Public
Operators

None

Public
Member Functions

StThreeVector<double>& position() const
Returns the position of the ionization cluster.

StThreeVector<double>& position()
Allows the position of the ionization cluster to be set.

float numberOfElectrons() const
Returns the number of electrons in a single cluster.

void setNumberOfElectrons(float n) const
Allows the number of electrons within the cluster to be set to a definite value n.

void scaleNumberOfElectrons(float f) const
Allows the number of electrons within the cluster to be scaled by a factor f.

Non-Member
Operators

ostream& operator<<(ostream& os, const StGlobalCoordinate& c)
Allows the printing of an StGlobalCoordinate to an output file stream without ac-
cessing each individual component.

Example #include "StThreeVector.hh"
#include "StGlobalCoordinate.hh"

int main()
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{

return 0;
}

Programs Output:

To be run
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17 Management and Auxiliary Classes

Following are descriptions of the management classes which are used to coordinate and oversee the simu-
lation procedure.

17.1 StTrsMaker

Summary

Synopsis #include "StTrsMaker.hh"
Requires

Description

Persistence None

Related Classes

Public
Constructors

StTrsMaker()

Public
Operators

None

Public
Member Functions

const StThreeVector<double>& pos() const
Inline access function which returns the coordinate in thr form of an StThreeVector.
Single components can only be accessed through member function of the StThree-
Vector.

Non-Member
Operators

None

Example see examples
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18 Physical Examples

Example
#include <iostream.h>
#include <unistd.h> // needed for access()
#include <fstream.h>

#include <string>
#include <vector>
#include <utility> // pair
#include <algorithm> // min() max()

// SCL
#include "Randomize.h"
#ifdef DIAGNOSTICS
#include "StHbook.hh"
#endif
// General TRS
#include "StCoordinates.hh"
#include "StTpcCoordinateTransform.hh"

// TRS
// db
#include "StTpcSimpleGeometry.hh"
#include "StTpcSimpleSlowControl.hh"
#include "StTpcSimpleElectronics.hh"
#include "StSimpleMagneticField.hh"
#include "StTrsDeDx.hh"

// processes
#include "StTrsFastChargeTransporter.hh"
#include "StTrsSlowAnalogSignalGenerator.hh"
#include "StTrsFastDigitalSignalGenerator.hh"

// containers
#include "StTrsAnalogSignal.hh"
#include "StTrsWireBinEntry.hh"
#include "StTrsWireHistogram.hh"

#include "StTrsSector.hh"

#define VERBOSE 1
#define ivb if(VERBOSE)

void printPad(StTrsSector *a)
{

ostream_iterator<StTrsAnalogSignal> out(cout,",");

for(int irow=0; irow<a->size(); irow++)
cout << irow << " " << "<" << a[irow].size() << "> ";

// for(int ipad=0; ipad<a[irow].size(); ipad++) {
// cout << irow << " " << ipad << "<" << a[irow][ipad].size() << "> ";
// //copy(a[irow][ipad].begin(),a[irow][ipad].end(),out);
// cout << endl;
// }
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}

// Sort the "analogSignal"s on a pad according to the time
// void sortTime(sector& a)
// {
// for(int irow=0; irow<a.size(); irow++)
// for(int ipad=0; ipad<PADS[irow]; ipad++) {
// sort(a[irow][ipad].begin(),a[irow][ipad].end(),comp_last());
// }
// }

/* -------------------------------------------------------------------- */
/* Main Program */
/* -------------------------------------------------------------------- */
int main (int argc,char* argv[])
{

//
// Make the DataBase
//
// Check File access
//
string geoFile("../run/TPCgeo.conf");
if (access(geoFile.c_str(),R_OK)) {

cerr << "ERROR:\n" << geoFile << " cannot be opened" << endl;
//shell(pwd);
cerr << "Exitting..." << endl;
exit(1);

}

string scFile("../run/sc.conf"); // contains B field
if (access(scFile.c_str(),R_OK)) {

cerr << "ERROR:\n" << scFile << " cannot be opened" << endl;
cerr << "Exitting..." << endl;
exit(1);

}

string electronicsFile("../run/electronics.conf");
if (access(electronicsFile.c_str(),R_OK)) {

cerr << "ERROR:\n" << electronicsFile << " cannot be opened" << endl;
cerr << "Exitting..." << endl;
exit(1);

}

//
// The DataBases
//
StTpcGeometry *geomDb =

StTpcSimpleGeometry::instance(geoFile.c_str());

StTpcSlowControl *scDb =
StTpcSimpleSlowControl::instance(scFile.c_str());

scDb->print();

StMagneticField *magDb =
StSimpleMagneticField::instance(scFile.c_str());
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StTpcElectronics *electronicsDb =
StTpcSimpleElectronics::instance(electronicsFile.c_str());

string gas("Ar");
StTrsDeDx myEloss(gas);

//
// create a Sector:
//
StTrsSector *sector = new StTrsSector(geomDb);

//
// Processes
//
StTrsChargeTransporter *trsTransporter =

StTrsFastChargeTransporter::instance(geomDb, scDb, &myEloss, magDb);
// set status:

// trsTransporter->setChargeAttachment(true);
// trsTransporter->setGatingGridTransparency(true);
// trsTransporter->setTransverseDiffusion(true);
// trsTransporter->setLongitudinalDiffusion(true);
// trsTransporter->setExB(true);

StTrsWireHistogram *theWirePlane =
StTrsWireHistogram::instance(geomDb, scDb);

// theWirePlane->setDoGasGain(true); // True by default
// theWirePlane->setDoGasGainFluctuations(false);
// theWirePlane->setDoTimeDelay(false);

StTrsAnalogSignalGenerator *trsAnalogSignalGenerator =
StTrsSlowAnalogSignalGenerator::instance(geomDb, scDb, electronicsDb, sector);

// trsAnalogSignalGenerator->setDeltaRow(0);
// trsAnalogSignalGenerator->setDeltaPad(0);
// trsAnalogSignalGenerator->setSignalThreshold(.0001);
// trsAnalogSignalGenerator->setSuppressEmptyTimeBins(true);

// ??should the type of function be an option ???

StTrsDigitalSignalGenerator *trsDigitalSignalGenerator =
StTrsFastDigitalSignalGenerator::instance(electronicsDb, sector);

//
// Generate the Ionization
//

float maxDistance = geomDb->lastOuterSectorAnodeWire();
PR(maxDistance);
float zPosition = 1.*meter;
float position = 52.*centimeter;
float dS;
do {

dS = myEloss.nextInteraction();
// PR(dS);

position += dS;
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if(position>maxDistance) break;

double primaryEnergyDistribution;
int totalElectrons = myEloss.secondary(&primaryEnergyDistribution) + 1;
cout << endl;
PR(totalElectrons);

// Make a StTrsMiniChargeSegment (the thing that must be transported)
StTrsMiniChargeSegment

aMiniSegment(StThreeVector<double>(0, position, zPosition),
totalElectrons, // q
0); // dl

PR(aMiniSegment);

//
// TRANSPORT HERE
//
trsTransporter->transportToWire(aMiniSegment);
PR(aMiniSegment);

//
// CHARGE COLLECTION AND AMPLIFICATION
//
StTrsWireBinEntry anEntry(aMiniSegment.position(), aMiniSegment.charge());
PR(anEntry);
theWirePlane->addEntry(anEntry);

}while(true);

cout << "\a***************************\a\n" << endl;

//
// Generate the ANALOG Signals on pads
//

trsAnalogSignalGenerator->inducedChargeOnPad(theWirePlane);

//
// Sample the ANALOG Signals that were induced on pads
//
trsAnalogSignalGenerator->sampleAnalogSignal();

//
// Digitize the Signals
//
trsDigitalSignalGenerator->digitizeSignal();

//
// Write it out!
//

cout << "Write out the Sector " << endl;
string outPutFile("output");
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ofstream to(outPutFile.c_str());
if(!to) {

cerr << "Cannot open output file " << outPutFile << endl;
exit(1);

}

for(irow=1; irow<=sector->numberOfRows(); irow++)
for(ipad=1; ipad<=sector->numberOfPadsInRow(irow); ipad++) {

tpcTimeBins currentPad = sector->timeBinsOfRowAndPad(irow,ipad);

for(tIter = currentPad.begin();
tIter != currentPad.end();
tIter++) {

to << irow << ’\t’ << ipad << ’\t’ << (tIter->time()) << " " << (tIter->amplitude()) << endl;
}

}

return 0;
}

Programs Output:

To be run
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